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1. Introduction. Let A be a compact symmetric negative-definite 
operator on a real Hilbert space H having the inner product (u, v). 
LetXi^X2^ • • • be the eigenvalues and U\, u%, • • • the correspond­
ing orthonormal set of eigenvectors of the equation Au=\u. Denote 
by R(u) the Rayleigh quotient (Au, u)/(u9 u). For a given Xw let m 
and N be the smallest and largest indices respectively such that 
Xm=Xw=X#. There are two variational characterizations of Xw by 
inequalities. One goes back to Poincaré [l, p. 259] and was reformu­
lated by Pólya and Schiffer [2], [3]. The other is the maximum-
minimum principle for which A. Weinstein [4], [5] recently intro­
duced a new approach. Using the Weinstein determinant and the cor­
responding quadratic form he gave for the first time a complete dis­
cussion of the corresponding inequalities including the necessary and 
sufficient conditions for equality. In the present paper we give a 
similar discussion of Poincaré's characterization of Xn. 

2. The main result. Let Vr be any /-dimensional subspace of H and 
let pi, pi, • • • , pr be a basis for Vr. We consider the determinant 

(1) det{(i!*<, pk) - \(pi, pk)}, h k = 1, 2, . . . , r. 

Using Parseval's formula we see that (1) can also be written as 

(2) det J £ to ~ X)(P* *i)(pk, *y)J , i, k = 1, 2, • • • , r. 

Let us note in passing the remarkable, but until now unexplained, 
similarity between (2) and the Weinstein determinant 

(3) W(\) = det J £ (A, - X)-1^, uj)(pk, «y)| , i, k = 1, 2, • • . , r. 

We can now formulate our main result. 

THEOREM. For any choice of Vr we have the inequality 
1 This paper was prepared by the author, while the author was an NDEA fellow 
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(4) \n S max R(u) 
u<=Vr 

if and only if m Sr. By varying Vr we obtain the following characteriza­
tion of X„. 

(5) \n = Min max R{u), ni<Lr SN. 
Vr u€Vr 

Assuming that m^r, the necessary and sufficient conditions on the space 
Vr for the equality 

(6) \n = max R(u) 
uevr 

are that r^N and f or any e > 0 the quadratic form with the symmetric 
matrix 

(7) {(Aph pk) - (Xn + e)(pi9 pk)}, i, h = 1, 2, • • - , r 

is negative definite. 

PROOF. The proofs of (4) and (5) have been given in [ l ] and [2], [3] 
for the case r = n. Obviously (4) holds also for m^r since Xm=Xn. To 
show the necessity of this condition we assume for the moment that 
(4) holds for all Vr where r<m and choose Vr to be the subspace 
spanned by Ui, u%, • • • , ur. In this case we have 

max R{u) = Xr < Xm = Xn ^ max R(u) 
u&Vr u£yr 

which is a contradiction. As in [2], [3] the equality (5) follows im­
mediately not only for r = n but also for m^r^N. In fact, it is suffi­
cient to use the classical choice pk~ukl k = 1, 2, • • • , r in order to ob­
tain (6). In §3 we give an example which shows that the classical choice 
is not a necessary condition for (6). To prove our necessary and suffi­
cient conditions we shall assume that the basis pu pi, • • • , pr has 
been chosen so that the matrix (7) is diagonal. First we show that our 
conditions are necessary. Suppose that (6) holds for r>N. Then, 
using (4), we obtain the contradiction 

Xr ^ max R(u) = Xn = XN < Xr. 
u&Vr 

Since (6) implies 

R(Pi) = (Api, pi) I {pi, pi) <\n +e, i= 1,2, •• - ,r 

all elements on the diagonal of (7) are negative, which proves that the 
quadratic form corresponding to (7) must be negative definite. To 
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prove sufficiency we assume that for any e>0 the diagonal matrix 
(7) is negative definite so that 

(8) (Ap4, Pi) < (Xn + e)(ph Pi), i = 1, 2, • • • , r 

and 

(9) (Api, pk) = (Xn + e)(Pi, pk), i9*k; i,k= 1,2, - - -,r. 

Since every uÇzVr can be written asw= XX-iY*P* w e have 
r 

S 7i(Api, pi) + X yi7k(Api, pk) 

(10) *(«) = — ^ 
r 

X yi7k(Pi, pk) 
i,k=l 

Using (8) and (9) in (10) we get for every uÇzVr R(u) <Xn + e. Com­
bining this with (4) we have X n ^max w e r r R(u) ^Xw + e. Since e can 
be chosen arbitrarily small the equality (6) holds. 

3. Example, We now give an example in which (6) holds for a non-
classical choice of Vr. Let Xi<X2<X3 and let m = r — n = N = 2. We 
choose pi = u2 and p2 = u% + (iuz as a basis for V2 where 0 < /32 

^(X2— Xi)/(X3— X2). A simple calculation shows that for every w £ V2 

the inequality R(u) ^X2 is satisfied. Since R(u2) =X2 we have X2 

= max„ey2 R(u). In this case (7) is a diagonal matrix with elements 
— e, — e(l+j32), which verifies our criterion. Let us note the formal 
analogy to the new maximum-minimum theory of A. Weinstein, 
where the quantities (Xy—X)~\ Xn —e, and jS-1 appear in place of 
X,— X, Xn+e, and /3. 

4. Concluding remark. I t has been shown in [l ] and [2], [3] that the 
roots Xx S X2 ^ • • • ^ X/ of (1) satisfy the inequalities 

Xi =* Xi, X2 â X2 j • • • j Xr is Xr 

and that the simultaneous equalities 

(11) Xi = Xi, X2 = X2, • • • , Xr = Xr 

are obtained by choosing pk = Uk9 k = l, 2, •• -, r. In another paper 
we shall prove that the only Vr for which (11) holds are those sub-
spaces generated by eigenvectors belonging to Xi, X2, • • • , Xr. 
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