ON POINCARÉ'S BOUNDS FOR HIGHER EIGENVALUES

BY WILLIAM STENGER1

Communicated by A. Zygmund, February 23, 1966

- 1. Introduction. Let A be a compact symmetric negative-definite operator on a real Hilbert space H having the inner product (u, v). Let $\lambda_1 \leq \lambda_2 \leq \cdots$ be the eigenvalues and u_1, u_2, \cdots the corresponding orthonormal set of eigenvectors of the equation $Au = \lambda u$. Denote by R(u) the Rayleigh quotient (Au, u)/(u, u). For a given λ_n let m and N be the smallest and largest indices respectively such that $\lambda_m = \lambda_n = \lambda_N$. There are two variational characterizations of λ_n by inequalities. One goes back to Poincaré [1, p. 259] and was reformulated by Pólya and Schiffer [2], [3]. The other is the maximum-minimum principle for which A. Weinstein [4], [5] recently introduced a new approach. Using the Weinstein determinant and the corresponding quadratic form he gave for the first time a complete discussion of the corresponding inequalities including the necessary and sufficient conditions for equality. In the present paper we give a similar discussion of Poincaré's characterization of λ_n .
- 2. The main result. Let V_r be any r-dimensional subspace of H and let p_1, p_2, \dots, p_r be a basis for V_r . We consider the determinant

(1)
$$\det\{(A p_i, p_k) - \lambda(p_i, p_k)\}, \quad i, k = 1, 2, \dots, r.$$

Using Parseval's formula we see that (1) can also be written as

(2)
$$\det \left\{ \sum_{j=1}^{\infty} (\lambda_j - \lambda)(p_i, u_j)(p_k, u_j) \right\}, \quad i, k = 1, 2, \cdots, r.$$

Let us note in passing the remarkable, but until now unexplained, similarity between (2) and the Weinstein determinant

(3)
$$W(\lambda) = \det \left\{ \sum_{j=1}^{\infty} (\lambda_j - \lambda)^{-1} (p_i, u_j) (p_k, u_j) \right\}, i, k = 1, 2, \dots, r.$$

We can now formulate our main result.

THEOREM. For any choice of V_r we have the inequality

¹ This paper was prepared by the author, while the author was an NDEA fellow in the Institute for Fluid Dynamics and Applied Mathematics of the University of Maryland.

$$\lambda_n \le \max_{u \in V_r} R(u)$$

if and only if $m \le r$. By varying V_r we obtain the following characterization of λ_n .

(5)
$$\lambda_n = \min_{V_r} \max_{u \in V_r} R(u), \qquad m \leq r \leq N.$$

Assuming that $m \le r$, the necessary and sufficient conditions on the space V_r for the equality

(6)
$$\lambda_n = \max_{u \in V_r} R(u)$$

are that $r \leq N$ and for any $\epsilon > 0$ the quadratic form with the symmetric matrix

(7)
$$\{(Ap_i, p_k) - (\lambda_n + \epsilon)(p_i, p_k)\}, i, k = 1, 2, \cdots, r$$

is negative definite.

PROOF. The proofs of (4) and (5) have been given in [1] and [2], [3] for the case r=n. Obviously (4) holds also for $m \le r$ since $\lambda_m = \lambda_n$. To show the necessity of this condition we assume for the moment that (4) holds for all V_r where r < m and choose V_r to be the subspace spanned by u_1, u_2, \dots, u_r . In this case we have

$$\max_{u \in V_r} R(u) = \lambda_r < \lambda_m = \lambda_n \le \max_{u \in V_r} R(u)$$

which is a contradiction. As in [2], [3] the equality (5) follows immediately not only for r=n but also for $m \le r \le N$. In fact, it is sufficient to use the classical choice $p_k = u_k$, $k = 1, 2, \dots, r$ in order to obtain (6). In §3 we give an example which shows that the classical choice is not a necessary condition for (6). To prove our necessary and sufficient conditions we shall assume that the basis p_1, p_2, \dots, p_r has been chosen so that the matrix (7) is diagonal. First we show that our conditions are necessary. Suppose that (6) holds for r > N. Then, using (4), we obtain the contradiction

$$\lambda_r \leq \max_{u \in V_r} R(u) = \lambda_n = \lambda_N < \lambda_r.$$

Since (6) implies

$$R(p_i) = (Ap_i, p_i)/(p_i, p_i) < \lambda_n + \epsilon, i = 1, 2, \cdots, r$$

all elements on the diagonal of (7) are negative, which proves that the quadratic form corresponding to (7) must be negative definite. To

prove sufficiency we assume that for any $\epsilon > 0$ the diagonal matrix (7) is negative definite so that

(8)
$$(A p_i, p_i) < (\lambda_n + \epsilon)(p_i, p_i), i = 1, 2, \cdots, r$$

and

$$(9) \qquad (A p_i, p_k) = (\lambda_n + \epsilon)(p_i, p_k), \ i \neq k; \ i, k = 1, 2, \cdots, r.$$

Since every $u \in V_r$ can be written as $u = \sum_{i=1}^r \gamma_i p_i$ we have

(10)
$$R(u) = \frac{\sum_{i=1}^{r} \gamma_{i}^{2}(A p_{i}, p_{i}) + \sum_{i \neq k} \gamma_{i} \gamma_{k}(A p_{i}, p_{k})}{\sum_{i,k=1}^{r} \gamma_{i} \gamma_{k}(p_{i}, p_{k})}.$$

Using (8) and (9) in (10) we get for every $u \in V_r R(u) < \lambda_n + \epsilon$. Combining this with (4) we have $\lambda_n \leq \max_{u \in V_r} R(u) \leq \lambda_n + \epsilon$. Since ϵ can be chosen arbitrarily small the equality (6) holds.

- 3. Example. We now give an example in which (6) holds for a non-classical choice of V_r . Let $\lambda_1 < \lambda_2 < \lambda_3$ and let m = r = n = N = 2. We choose $p_1 = u_2$ and $p_2 = u_1 + \beta u_3$ as a basis for V_2 where $0 < \beta^2 \le (\lambda_2 \lambda_1)/(\lambda_3 \lambda_2)$. A simple calculation shows that for every $u \in V_2$ the inequality $R(u) \le \lambda_2$ is satisfied. Since $R(u_2) = \lambda_2$ we have $\lambda_2 = \max_{u \in V_2} R(u)$. In this case (7) is a diagonal matrix with elements $-\epsilon$, $-\epsilon(1+\beta^2)$, which verifies our criterion. Let us note the formal analogy to the new maximum-minimum theory of A. Weinstein, where the quantities $(\lambda_j \lambda)^{-1}$, $\lambda_n \epsilon$, and β^{-1} appear in place of $\lambda_j \lambda$, $\lambda_n + \epsilon$, and β .
- 4. Concluding remark. It has been shown in [1] and [2], [3] that the roots $\lambda_1' \leq \lambda_2' \leq \cdots \leq \lambda_r'$ of (1) satisfy the inequalities

$$\lambda_1 \leq \lambda_1', \ \lambda_2 \leq \lambda_2', \cdots, \lambda_r \leq \lambda_r'$$

and that the simultaneous equalities

(11)
$$\lambda_1 = \lambda_1', \ \lambda_2 = \lambda_2', \cdots, \lambda_r = \lambda_r'$$

are obtained by choosing $p_k = u_k$, $k = 1, 2, \dots, r$. In another paper we shall prove that the only V_r for which (11) holds are those subspaces generated by eigenvectors belonging to $\lambda_1, \lambda_2, \dots, \lambda_r$.

REFERENCES

1. H. Poincaré, Sur les équations aux dérivées partielles de la physique mathématique, Amer. J. Math. 12 (1890), 211-294.

- 2. G. Pólya, Estimates for eigenvalues, Studies in Mathematics and Mechanics, presented to Richard von Mises, Academic Press, New York, 1954, pp. 200-207.
- 3. G. Pólya and M. Schiffer, Convexity of functionals by transplantation, J. Analyse Math. 3 (1954), 245–345.
- 4. A. Weinstein, Intermediate problems and the maximum-minimum theory of eigenvalues, J. Math. Mech. 12 (1963), 235-246.
- 5. ——, An invariant formulation of the new maximum-minimum theory of eigenvalues, J. Math. Mech. (to appear); Notices Amer. Math. Soc. 13 (1966), 384.

INSTITUTE FOR FLUID DYNAMICS AND APPLIED MATHEMATICS, UNIVERSITY OF MARYLAND