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The linear operators, introduced by Sario [4] to construct har­
monic functions with prescribed properties on Riemann surfaces, form 
a convex set. Ahlfors [ l ] has conjectured a representation for the 
extreme operators of this convex set. We give an equivalent formula­
tion of this conjecture and show that it is not true in general. 

The author would like to take this opportunity to express his ap­
preciation to Professors H. L, Roy den and R. R. Phelps for the 
numerous conversations on matters relating to this paper. 

1. Let W be a subregion of ^ Riemann surface R. We suppose W 
has a compact complement and that its relative boundary a is ana­
lytic. We consider a linear operator T which, to continuous values ƒ 
on a, assigns a harmonic function Tf on W such that Tf ==ƒ on a. T is 
assumed to have the following additional properties: 

(1.1) 71 = 1, Tf è 0 i f / â 0, 

f àTf 
(1.2) — ^ = 0. 

J a dn 
Sario [4] has called these operators normal linear operators. I t is 

clear that the set of such operators on W form a convex set. 

2. We assume, with Ahlfors [ l ] , that the ideal boundary /3 of R 
is analytic. Consider the harmonic measure of the region befween a 
and |3. Tha t is, the harmonic function on W which is 0 on a and 1 
on j8 and normalized so that the period of its conjugate function along 
a is 1. In terms of this conjufate function we parametrize a and ]8 by 
0 ^ x 5 ^ 1 , O g y ^ l , respectively. 

Given ƒ on a, Tf has radial limits almost everywhere on /3 and this 
null cet E may be selected independent of ƒ (See [ l]) . In this manner 
we may consider T as inducing a linear mapping from the space 
C(0, 1) of continuous functions on a to L°°(0, 1) the space of bounded 
measurable functions on ]8. We denote this induced linear operator 
by T also and the class of all such operators by L. They have the fol­
lowing properties corresponding to conditions (1.1) and (1.2) above: 
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(2.1) 71 = 1, Tf^O i f / è 0, 

(2-2) fV= f V-
• ' O • ' O 

For a fixed value of y the mapping f—*(Tf)(y) defines a linear func­
tional on C(0, 1). By the Riesz representation theorem we have 

(2.3) (Tf)(y)= f f(x)d»(x,y). 
J o 

Corresponding to the above conditions on T, the family of mea­
sures {M(*> y)} on Orgx^gl associated with T h a s the following prop­
erties: 

(2.4) M([0,l],y) = 1, M ( - , y ) è O 

(2.5) 1 ^ 1 /(*) <*/*(*> ?) == I f(x)dx. 
J o J o J o 

3. Ahlfors [ l ] has conjectured that T is extreme in L if and only if 
M(*> y) is a point mass for almost every y. If this were the case, it is 
clear that the corresponding operator T is extreme. We note, in this 
case, that we have a mapping x = g(y) defined for almost every y 
which assigns to y the point x = g(y) where the point mass is concen­
trated. Hence (Tf)(y)=f(g(y)) and condition (2.5) becomes 

(3.1) f f(g(y))dy= f f(x)dx. 
Jo J o 

Since this holds for every ƒ in C(0, 1), g(y) is a measure preserving 
transformation from O ^ ^ ^ l to O^xrg l . 

Conversely, if g(y) is any measure preserving transformation from 
O^y^l t o O ^ x ^ l then the composition operator defined by (Tf)(y) 
=f(g(y)) is extreme in L and the associated mass distribution JU(-, y) 
is a point mass for almost every y. Thus an equivalent formulation 
of Ahlfors' conjecture is that every extreme operator of L is of the 
form (Tf)(y) —f(g(y)) where g(y) is a measure preserving transforma­
tion from O^y^l to O ^ x ^ l . 

4. Consider the class K of linear operators which map C(0, 1) into 
L°°(0, 1) and satisfy the conditions: 

(4.1) 71 = 1, Tf^O if ƒ ^ 0. 

Then L={TEK: fTf=ff, fEC(0, 1)}. 
K forms a convex set and we determine the extreme operators of K. 
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Our method is to replace the space JL°°(0, 1) by an equivalent C(S) 
space where S is compact Hausdorff and apply the results of Phelps 
[2] concerning extreme operators which map C(0, 1) into C(S). 

The Gel'fand representation (See Dunford and Schwartz, vol. 1, 
p. 445) gives us an isometric isomorphism A between L°°(0, 1) and 
C(S) where 5 is a compact Hausdorff space. The isomorphism A maps 
positive functions into positive functions and is an algebraic isomor­
phism. Tha t is, if h(y)=f(y)g(y) almost everywhere then Ah=AfAg. 
Also if F is an arbitrary continuous function of a complex variable 
and h is in L°°(0, 1) then 

(4.2) A(F(h)) = F(A(h)). 

Note that under the mapping A a positive function has a positive 
function as a preimage. For if A(/) = g where g^O then taking F in 
(4.2) to be the absolute value function we have A(|ƒ| ) = | A(/) | = | g\ 
=A(/ ) . Therefore ƒ = l/l o r / ^ 0 . 

Set T'f=A(Tf). Then V is a linear mapping from C(0, 1) to C(S). 
Denote by K' the image of the class K under the map A, then the 
operators T' in K' satisfy: 

(4.3) T'\ = 1, 2 7 è 0 i f / ^ 0. 

Moreover, T is extreme in K if and only if T' is extreme in Kf. 

THEOREM. T is extreme in K if and only if there is a bounded mea­
surable mapping g from O ^ y ^ l to O ^ x ^ l such that Tf=f(g). 

PROOF. By Phelps theorem [2], V in K' is extreme if and only if 
there is a continuous mapping G from S to O ^ x ^ l such that T'f 
=/(G) for all ƒ in C(0, 1). But A{Tf) = Vf=f{G) and since G is in 
C(S) let g be in L°°(0, 1) such that Ag = G. Note that g è 0 since G ̂  0. 
Also since A is norm preserving we have ||g|| = | | G | | ^ l . Hence 0 ^ g ̂  1 
and thus g is a bounded measurable mapping from O ^ ^ ^ l t o O ^ x ^ l . 
From (4.2) we have A(/(g)) =/(A(g)) for every f in C(0, 1) hence 
ACT/) =f(G) =/(A(g)) =A(/(g)) or Tf=f(g). 

REMARK. Phelps [2] has also shown that the extreme operators of 
K' can be characterized as the multiplicative operators. That is, 
T'(fh) = (T'f)(T'h). Hence from A(TfTh)=A(Tf)A(Th)~(Tf)(T'h) 
= Vifh) =A(T(fh)) we conclude that 

THEOREM. T is extreme in K if and only if T is multiplicative. That 
is, T(fh) = TfThfor every f, h in C(0, 1). 

5. We now show the connection between Ahlfors* conjecture and 
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the extreme operators of L and K. As noted earlier, Ahfors' conjecture 
may be stated as: 

T is extreme in L if and only if Tf—f(g) where g is a measure preserv­
ing mapping from 0 ?g;y = 1 to 0 = x = 1. 

THEOREM. Ahlfors' conjecture holds if and only if every T which is 
extreme in L is also extreme in K. 

PROOF. If the conjecture holds then it is clear that T is multiplica­
tive and hence extreme in K. Conversely if T extreme in L implies T 
extreme in K then Tf=f(g) and the integrability condition (2.2) im­
plies that g is measure preserving. 

An equivalent formulation of the above result is 

THEOREM. Ahlfors1 conjecture holds if and only if every extreme oper­
ator T in L is multiplicative. 

6. An example due to Ryff [3] shows that there exists an operator 
T in L which is extreme but not multiplicative. This example settles 
Ahlfors' conjecture in the negative. 

Define the operator T as follows. 

(6.1) (Tf)(y) = \f(y/2) + f((y + l ) /2)] /2 . 

Simple calculations show that T is in L and is not multiplicative. 
Note that 

(6.2) (Tf)(y) = f ƒ(*) dœ(x, y) = [/(y/2) + f ((y + l ) /2)] /2 
J o 

implies that the associated measureo)(-,y) consists of a 1/2 unit point 
mass a t y/2 and a 1/2 unit point mass a t (y + l ) / 2 . 

To show that T is extreme in L, we show that if T can be repre­
sented as r = ( jTi+r 2 ) /2 with Zi, T2 in L, then T= 7 i = T2. In terms 
of the associated measures we have 

(6.3) <»(;y) = [»(-, y) + »(-,y)]/2 

where fx and v are the measures corresponding to T\ and T2, respec­
tively. 

Since /x and v are nonnegative it is evident tlat each has mass con­
centrated only at the points y/2 and (3/ + IV2 for almost every y. 
Also, from the fact that co((;y + l ) / 2 , y)=a)(y/2, y) = 1/2 for a.e. y 
we have 

(6.4) l = n(y/2,y) + v(y/2,y) 

and 
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(6.5) l = M«y + l)/2, y) + v((y + l ) A y). 

Let a(y)=ii(y/2f y) and j8(y)=/i((y+l)/2, y) then since the total 
mass of /x is 1 we have j8(y) = 1—a(y) for a.e. y. We show that a(y) 
= 1/2 for a.e. y and hence that /*( •, y) = *>( •, y) and thus T=Ti= TV 

From the nature of the mass distribution ju( •, y) we have 

(6.6) f ƒ(*) <fo(*, y) = a(y)f(y/2) + [l - a(y)]f((y + l)/2) 
•J o 

for every ƒ in C(0,1). From the integrability condition (2.5) we obtain 

(6.7) f ƒ(*) <fc = f {«(y)/(y/2) + [1 - a(y)]/((y + l)/2)} dy. 
Jo ^ o 

Let ƒ in C(0, 1) be such that/vanishes on [1/2, l ] then (6.7) becomes 

(6.8) f f(x)dx= f a(y)f(y/2)dy 
«/ o J o 

or making a simple change of variable (6.8) is equivalent to 

(6.9) f [2a(20 - l]f(t) dt = 0. 
^ o 

This holds for every continuous ƒ on [0, 1/2] which vanishes at the 
endpoints. Hence ct(t) = 1/2 for a.e. t on [0, l ] . 
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