
A SETTING FOR GLOBAL ANALYSIS1 

BY JAMES EELLS, JR. 

Introduction. The primary aim of this report is to present a broad 
outline for a coherent geometric theory of certain aspects of non
linear functional analysis. Its setting requires the calculus in topo
logical vector spaces, differential geometry of infinite dimensional 
manifolds, and the algebraic and differential topology of function 
spaces. For the most part the developments are of quite recent origin, 
and at present the theory is in a fluid state (its growth depending 
strongly on its concrete applications). The beginnings of the subject 
may be traced to the work of Fréchet, Gâteaux, and Vol terra; we 
refer to the text [73] of P. Levy for an exposition of some early ap
plications (especially in the calculus of variations and integrable 
differential systems)—and ask pardon for not presenting any his
torical perspective in the present survey. 

About ten years ago it was formally recognized [29] that many of 
the function spaces which arise in global geometric mathematics 
possess a natural infinite dimensional differentiable manifold struc
ture. Tha t was not a great surprise; for 

(1) Many of the most interesting manifolds of differential geom
etry are well known to have representations as function spaces of 
rigid maps. (E.g., Riemannian manifolds arise as the configuration 
spaces of dynamical systems, their cotangent bundles are interpreted 
as phase spaces, and their Riemannian metrics in terms of kinetic 
energy.) 

(2) Much of the language of the classical treatment of the calculus 
of variations—and the penetrating viewpoint and methods of M. 
Morse—is that of a function space differential geometry. (E.g., the 
Euler-Lagrange operator of a variational problem has an interpreta
tion as a gradient vector field, whose trajectories are lines of steepest 
descent.) 

(3) Certain eigenvalue problems in integral and differential equa
tions have interpretations in terms of Lagrange's method of multi
pliers, involving differential geometric ideas in infinite dimensions 
(e.g., focal point theory, and geometric consequences of the inverse 
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function theorem). Throughout our exposition these examples have 
served as our guides. 

Placing such classical problems in an appropriate geometric setting 
usually involves certain technical difficulties. For instance, choice of 
a suitable linear topology on the tangent spaces of the function space; 
choice of the right topological tensor products; choice of the appropri
ate type of differentiability. In certain cases these difficulties have 
been resolved—and then infinite dimensional differential geometry 
has led to new methods and results in classical analysis, global Rie-
mannian geometry in finite dimensions, and algebraic topology. We 
have included here certain of these applications, the global calculus 
of variations being the most thoroughly developed of these (see 
§§8-10). Many others appear throughout the text as examples. 

Comments and corrections for a preliminary draft of this article 
have been made by R. Abraham, R. Bonic, K. Jânich, J. McAlpin. 
I herewith express hearty thanks to them—along with my apprecia
tion of the spirit of generosity and cooperation of the mathematical 
community, which in particular has made available to me in preprint 
or oral form a substantial part of the recent bibliographical references. 

1. Linear space background. This section contains a review (with 
some new results) of certain aspects of linear space theory; in par
ticular, we establish conventions and notation. For suitable exposi
tions we refer to [13], [26]. 

(A) Let £ denote a locally convex topological vector space over the 
real number field R (unless otherwise specified) ; thus E is a Hausdorff 
topological vector space having a fundamental system of neighbor
hoods of its origin consisting of convex sets. We say that E is a 
Frêchet space if its uniform structure is complete and metrizable. 
If E is complete and has its uniform structure given by a norm 
(x—>|x|#= \x\) (resp., by an inner product (x, y)—*(x, J)E), we call 
E a Banach space {resp., a Hubert space); we use that terminology 
even though we may not have associated a distinguished norm for E 
(in the family of equivalent norms determining the structure of E). 
I t has been established very recently, through combined efforts of 
M. I. Kadec, C. Bessaga, A. Pelczynski, and R. D. Anderson, that 
all separable infinite dimensional Frêchet spaces are homeomorphic. 

Say that a closed linear subspace A of a Fréchet space £ is a 
direct summand if there is a closed linear subspace C of E which is 
supplementary to A ; then E is topologically isomorphic to the direct 
sum A@C. Any finite dimensional subspace is a direct summand; 
so is any closed finite codimensional subspace (i.e., a subspace A 
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such that dim(£/^4) < <*>), and any closed superspace of A in E. Any 
closed subspace of a Hubert space is a direct summand. Certain inter
esting ideals in algebras of differentiable functions are direct sum-
mands; see [40, Chapter III 6; also §7C below]. On the other hand, 
Murray [84] has shown that Lp (Kp 7*2) always has closed linear 
subspaces without closed supplements. 

(B) For homotopy theory the following fact is important (due in
dependently to Palais [90], [92] and Svarc [ l lS in the case that E is 
a Banach space]): 

Let E1C.E2C. ' ' • be an increasing sequence of finite dimensional 
subspaces of a locally convex topological vector space E whose union 
U {Ek : k jg 1} is dense in E. For any subset U of E we define Uk = UC\Ek 
and [7oo = inj lim Uk, the direct limit space of the sequence (Uk)kai* If 
U is open and paracompact, then the naturally induced map U^—* U is 
a homotopy equivalence. 

In the same order of ideas [92]: 

Let E and F be locally convex topological vector spaces, and <j>\ E-+F 
a continuous linear injection of E onto a dense linear subspace of F. If 
V is open in E, U = <j>~1(V), and both U and V are paracompact, then 
<t>: U-^V is a homotopy equivalence. 

(C) Given two locally convex topological vector spaces E and E, 
we let L(E, F) denote the vector space of all continuous linear maps 
u: £—>E. There are many useful (Hausdorff) locally convex topologies 
which can be put on E(E, F)—in particular, the following extremes: 
the weak topology (resp., the strong topology) is that of uniform con
vergence on the finite (resp., the bounded) subsets of E. If E is a 
Fréchet space and F is complete, then L(E, F) is complete in the 
uniform structure of the strong topology. If £ and F are Banach 
spaces with distinguished norms, then L(£ , F) is a Banach space 
with norm \\u\\ =sup{ | u{x) \ F/\X\ E'> O F ^ X G E } . For Banach spaces 
£ , F, G the canonical map L(£ , F)XL(F, G)->L(E, G), defined 
through composition of maps, is continuous. 

Let uÇzL(E} F) and F0 be a closed linear subspace of F. We say 
that u is transversal to F0 if the composition E-~>F—>F/FQ of u with 
the coset map ir of F0 is surjective and has kernel E0 which is a direct 
summand of E. If ir o u: E—>F/F0 is surjective and F0 has finite co-
dimension in T7, then codim (E, E 0 )=codim (F, E0) and u is trans
versal to Eo. If E and F are Banach spaces, then the subset of 
L(E, F) consisting of those injections whose images are direct sum-
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mands is open in the norm topology on L(E, F). So is the subset of 
those surjections whose kernels are direct summands; so is the sub
set of topological isomorphisms [2, p. 40 ]. 

(D) We will need to consider topological vector spaces of multi
linear maps E iX • • • XEk-^F of locally convex topological vector 
spaces, which are jointly or separately continuous. In general that 
requires the theory of topological tensor products, a survey of which 
is given in [22]. For Fréchet spaces the separately continuous multi
linear maps coincide with the jointly continuous ones. For Banach 
spaces E, F let (k ^ 1) Lk(E, F) denote the Banach space of fe-linear 
continuous (equivalently: bounded) maps a : E X • • • XE-+F; thus 
with distinguished norms on E and F 

| a(xi, • • • , xk) \F ^ const. | %\ \E • • • | xk \E for all %t G E, 

and these norms induce a norm (whose topology is that determined 
by the projective tensor product) on Lk(E, F). There is a canonical 
isometric isomorphism identifying Lk(E, F) with L(E, Lk~l(E, E)), 
where we agree to let L°(E, F) = F. We denote by SLk(E, F) the closed 
linear subspace of Lk(E, F) consisting of those fe-linear maps which 
are symmetric in their arguments; similarly, ALk(E, F) denotes the 
subspace of alternating ^-linear maps. 

(E) Set E*=L(Ey R), with strong topology. If E is a Fréchet 
space, then £ * is complete; E* is metrizable when and only when 
E is a Banach space. If uÇ^LiE, E), we let u*£:L(F*, E*) denote the 
adjoint of u, characterized by (u*(y*), x) = (y*f u(x)) for all x £ E , 
/y*ç=j7*; h e r e the left bracket denotes the canonical bilinear pairing 
E*XE-> JR. Let K e r ( » = {xEE: u(x) = 0 } , and Im(w)=w(E); in 
case u(E) is a closed subspace of F we define the cokernel of u by 
Coker (u) = F/u(E). 

We will be interested in certain subsets of L(E, E), especially in 
case E and F are Banach spaces: 

(1) Those u&L(Et F) with u(E) closed in E; these maps are char
acterized (in case E and F are Fréchet spaces) as the maps u carrying 
open sets of E to open sets of u(E). A map has closed range if it 
carries closed bounded subsets of E into closed bounded subsets of F. 
If u has closed range, then 

Im(«) = {yGF: <y*, y) = 0 for all 3/* G Ker(w*)}, 

Ker(^) = {% G E: (x*, x) = 0 for all x* G Im(w*)}. 

(2) Those uÇzL(E, F) with closed ranges and finite dimensional 
kernels (resp., cokernels); we call these Ze//-(resp., right-) Fredholm 
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operators. If E (resp., F) has finite dimension, then any uÇzL(E, F) 
is a left (resp., right) Fredholm operator. Those u which are both left 
and right Fredholm operators are called Fredholm operators. For these 
their index is defined by ind(^) =dim Ker(w) —dim Coker (u). If u is 
Fredholm, then d i m £ < o o if and only if dim F<*>. See [88] for 
general properties of Fredholm operators. 

(3) An operator kÇ:L(Ey F) is compact if it maps bounded sets of 
E into relatively compact sets of F (i.e., sets whose closures in F are 
compact); the compact linear operators form a closed subspace of 
L(E, F), where L(E> F) is given the norm topology. An operator 
uÇzL(E, F) is Fredholm if and only if there are maps vi, v2£:L(F, E) 
such that V\U — I and uv2 — I are compact (where I denotes the iden
tity map of the appropriate space). In particular, if u is Fredholm and 
k compact, then u+k is Fredholm and ind(u+k) =ind(u). The total
ity of Fredholm operators forms an open subset of L(Ey F) with the 
index function constant on components; if E and F are Hubert spaces, 
then two Fredholm operators with the same index are in the same 
component. 

2. Smooth maps of Banach spaces. For the fundamental properties 
of the calculus in Banach spaces we refer to [23], [50], [64], [117], 
and to the older works [42]-[45], [73]. 

(A) Let E and F be real Banach spaces, and U an open subset of 
E. There are many senses in which a map <j>\ U—>F can be considered 
as differentiate in U (e.g., in the sense of Gâteaux, of Fréchet; point-
wise or uniformly), the choice often depending on the applications 
under consideration. We proceed here as follows: A map <j>: U->F is 
(Fréchet) differentiable at x0ÇzU if there is a ^E:L(E} F) such that 

| 0(*o + «0 - <K*o) - Hv) \F 
(1) h m f—: = 0 

i>->0 \V\E 

for some (and hence any) choices of admissible norms on E and F. 
Then $(v) is unique, and is henceforth denoted by c/)^(xo)v or by 
d<f>(xo\ v), and called the differential of <j> at XQ in the direction z / £ E . 
We have 

4>(xo + hv) — 4>(x0) 
d<j)(xo, v) = h m ; 

h->0 h 

conversely, if the right member exists as an element of F in some 
neighborhood of x0, is continuous at xQl and d(t>(x0f v) is continuous in 
v at v = 0, then <f> is Fréchet differentiable at x0, and the right member 
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defines its differential. If <£ is differentiate at x0l then <f> is continuous 
there. 

Suppose that <j> is Fréchet difïerentiable at every x(£U; then we 
have the m a p ^ : U-*L(E, F) defined by x—x^Ofc), and we say that 
<£ is of class C1 if «^ is continuous on U> If <£ is Fréchet difïerentiable 
in £/, then <j> is C1 if and only if <f>^ is locally bounded and the limit 
(1) is locally uniform in U (in the sense that for all XoÇzU and e > 0 
there is a neighborhood V of Xo and S>0 such that \cj>(x+v) — <£(#) 
- # ( x , v)\ <e\v\ for all x £ F a n d \v\ <S). If 0^ = ^ : U-^L(Ey F) is 
Fréchet difïerentiable, then we can define d2<£ = d{d<t>)'. U 
—>L(E, £ ( £ , F))=L2(E, F), which at each x £ C / is a symmetric 
continuous bilinear map of EXE—+F', we say that <f> is of class C2 if 
d2<j> is continuous on U. Then define </> of class Cr by induction, requir
ing that dr<j>: U—>SLr(E, F) be continuous. Say henceforth that <f> is 
differentiable on U if it is Cr for all r ^ 0 ; let us agree that d0<f> = cf). The 
composition of Cr-maps is Cr\ if cj> is Cr and d r$ is O then <£ is Cr+*, 
and dr+*<l>~d*(dr<l>). Say that <£ is analytic in Z7 if each point # £ £ / 
has a neighborhood in which </> can be expressed by the absolutely 
convergent power series 

A h 
<f>(x + v) = 22 P<t>(x> v)/k\, 

fc=*0 

where P*(x, v) = dk<p(x\ v, • • • , v)\ again, the composition of analytic 
maps is analytic. If E and F are complex Banach spaces, we say that 
an analytic map<£ is holomorphic; the elements of complex function 
theory are given in [24a], [50]. 

We have the following version of Tay lors formula: 

Let U be a convex neighborhood of x0 in E and <j>: U—*F a O-map 
(r ^ 1). For any ISjSr there is a C^i-map Rf. U-^L'iE, F) such that 

(f)(x0 + v) = 22 -P*(*o, v)/kl + Rj(x0 + v)(»,-•• , v), 

where 
r1 (1 - ty-1 

Rj(x0 + v)(v, • • • , v) = I — — dtyfa + tv)(v, • • • , v)dt; 
J o 0 ~ 1) i 

the integral is of course Banach space-valued. Furthermore, for every 
e > 0 there is a S > 0 such that for \v\ S 5 we have 

<t>(xo + v) — 22 Pdxo, v)/k\ ̂ « \V\ 

(B) If <t> is a one-one Cr-map of an open set UC.E onto an open set 
VCF and if its inverse 0 _ 1 : V—>U is Cr, then we say that <£ is a Cr-
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diffeomorphism. Say that <£: 17—>F is a (local) split Cr-itnbedding if 
there is a representation F = Fi®F2 ,as the direct sum of Banach 
spaces with the following property: For each xQU there are neigh
borhoods Ux, Vx of x, <j>(x) and a Cr-diffeomorphism \f/ of Vx onto an 
open subset of Fi®F% carrying cj>(x) onto 0 and such that \f/ o<j> is a 
Cr-diffeomorphism of Z7* onto an open subset of 7*1 ©0. There is also 
the dual concept of (local) split Cr-projection. 

The following inverse function theorem plays a fundamental role, 
both in the geometric and analytic aspects of the theory (see [23], 
[43], [64]): 

Let E and F be Banach spaces, U an open subset of Ef <t>: U~*F a 
C-map (r^l). Then 

(1) ifxÇ^Uis a point for which ^(x) : E—>Fis infective and its image 
is a direct summand, then there is a neighborhood Ux of x in U such 
that the restriction </>| Ux-+F is a split Cr-irnbedding. 

(2) If <t>^(x) : E—>F is surjective and its kernel is a direct summand, 
then there is a neighborhood Ux of x such that <j>\ UX—>F is a split Cr-
projection. 

(3) In particularf if <l>%(x) is bijective, then <j> maps a neighborhood 
Ux of x Cr-dijfeomorphically onto a neighborhood of <j>(x). 

EXAMPLE [108]. If <j>:E->F is a C^-map with every differential 
<f>#(x) bijective and satisfying H^W" 1!! ^K for some KÇzR and all 
xÇzE, then <j> is a C^-diffeomorphism of E onto F. In particular, the 
conclusion is valid if E = F is a Hubert space, and (<t>x(x)v, v) è c \ v | 2 for 
some c > 0 and all x, v&E. Tha t last condition is equivalent (for C1-
maps) to saying that <t> is strongly monotone: {<t>(x)—<t>(y)t x—y) 
^c\x—y\2 for all x, yGE. 

Closely related to the inverse function theorem are several implicit 
function theorems which have found varied analytic interpretations. 
See [117, §§17, 26] for applications to integral equations, especially 
in the study of branch points of operators. The Nash-Moser implicit 
function theorem [83], [108] provides a very powerful iteration tech
nique used to establish the existence of differentiable solutions of 
certain differential equations. Under certain conditions on the differ
ential of <j> a form of the inverse function theorem is valid even though 
<f>^ may not be continuous [5]. 

(C) A basic problem [29] in the theory of infinite dimensional 
manifolds is that of showing the existence of sufficiently many non-
trivial differentiable functions. Let us say that a Banach space E 
is O-smooth if there is a nontrivial real valued Cr-function on E with 
bounded support. (The support S(</>) of a function 0 : E—»jR is the 
closure of { # £ Z £ : < £ ( X ) T ^ 0 } . ) The following characterization is due 
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to Bonic and Frampton (see [lO], [ l l ] , [37] for this and for most 
of the examples below) : 

If E is a separable Banach space, then the following properties are 
equivalent : (a) E is Crsmooth ; (b) any open subset U of E admits Cr-
partitions of unity, (i.e., for every open cover U of U there is a system 
WO °f nontrivial Cr-functions \l/a: £7—-^R(^O) such that the set of all 
supports Stya) is locally finite (each # £ £ / has a neighborhood which 
meets only finitely many of the Stya)), each S(\l/a) is contained in some 
element of U, and the sum ]>% ̂ a = 1) ; (c) for any continuous map <j> of 
U into a Banach space F and any number e>0 , there is a Cr-map 
yp: U—+F such that \<j>(x) —^(x) \ F<efor all x £ [ / . 

In a separable space E satisfying these conditions it follows easily 
that any closed set A is the precise locus of zeros of some Cr-function 
<t>\ E—>R. Furthermore, if Ao, A\ are disjoint nonvoid closed subsets 
of J5, then there is a Cr-function <j>: E-+R with 0^</>(x)gl for all 
# £ £ , <£(x)=0 (resp., <j>(x) = l) when and only when x G ^ o (resp., 
xÇEiAi). The extent to which separability is needed in these results is 
not clear. 

Any Banach space E is C°-smooth; in fact, we can use the metric 
structure of E to construct locally Lipschitz functions which separate 
disjoint closed sets in £ . Any separable Hilbert space is C°°-smooth, 
since the square of the norm is quadratic, and hence C00. Restrepo 
[97] has shown that a Banach space E has a C^-norm (except at the 
origin) if and only if its conjugate space E* is separable; apparently 
little is known about spaces with Cr-norms ( r ^ 2 ) . Thus if E* is 
separable then E is C^-smooth. The Banach spaces Lp of all Lebesgue 
pth. power (\Sp< °°) summable functions ƒ: [0, l]—>R with norms 

l/U* = |_Jo 1/wMj 
are C^-smooth for p an even integer ^ 2 ; otherwise (1^£<<*>) Lp 

is Cr-smooth if r is the integer satisfying r<p^r + l (since its norm 
is O except at the origin), but Lp is not Cr+1-smooth. (This last asser
tion is implied by work of Kurzweil [63]; in particular, I1 is not C1-
smooth.) As an application, we observe that U and L4 are not C3-
diffeomorphic, although by a theorem of M azur they are homeomor-
phic. The Banach space c0 (the space of sequences of real numbers 
which converge to 0, with supremum norm) is C°°-smooth; on the 
other hand, the space C (all continuous functions/: [0, l]—>JR with 
supremum norm) is not ^-smooth. 

Certain maps which are not sufficiently differentiate are deter-
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mined by their boundary values [ l l ] : Let £ be a Banach space con
taining a subspace isomorphic to I1 (for example, take E — Lx or C 
or Ck), and F a reflexive Banach space. If <fi: 77—>F is a continuous 
map of the closure of a bounded connected open subset of E which is 
C1 on Uy then <j> (boundary U) is dense in cj>(U). 

(D) There are examples of C°°-functions <j>: E-+R defined on Ban
ach spaces E such that the image in R of the set of critical points 
(i.e., points x £ E for which ^(x) = 0) is of strictly positive measure. 
Kupka [62 ] has constructed such a function for the case that £ is a 
separable Hilbert space. The following example is due to R. Bonic. 

EXAMPLE. Let a: R—»JR(^0) be a C°°-function such that a(t) 
= 0 ( * ^ 0 ) , a ( 0 = l ( * è l ) . L e t £ = L°° [0, l ] and cj>: E->R be defined 
by <£(x) = foct(oc(t))dt for all # £ £ . Then </> is C00 on £ ; in particular, 

d4>(x, v) = I a'(x(t))v(t)dt. 
Jo 

For any O^sS 1 let xs be the characteristic function of [0, s]. I t 
follows that <Kx0)

 = 0» </>(#i) = 1 ; on the other hand, ^(x*) = 0(0 ^ s ^ 1). 
Thus s—>xs is a (discontinuous) path in E on the image of which (j> is 
not constant, and yet every point of which is a critical point of </>. 

Thus we cannot expect a complete generalization to infinite dimen
sions of the Brown-Morse-Sard theorem; however, (1) Sard [104] has 
recently obtained precise results on the Hausdorff measure of the 
image of the critical points of a Cr-map </>: U—>F, where U is an open 
subset of Rn and F is any Banach space; (2) using the finite dimen
sional case and the inverse function theorem, Smale [ i l l ] has ob
tained the following version of that result: 

Let U be a connected open subset of a separable Banach space E 
and 0 : U—>F a Cr-map (r ^ 1). The critical set of<j) is C= { x £ U: <j>%(x) 
is not surjective}. Say that <f> is a Fredholm map if for every x £ £7 the 
differential <£*0c): E—>F is a Fredholm operator; recall consequently 
that F is infinite dimensional whenever E is. The index of <fi is 
the constant value ind(</>) =dimKer($*(x))— dimCoker($*(x)). If 
<t>: U—>F is a Cr-Fredholm map with r > max(ind(<ƒ>), 0), then the image 
<j>(C) of its critical set is meager in F (i.e., <}>{€) is expressible as a 
countable union of sets whose closures contain no interior point of 
F). Smale [ i l l ] has used this to establish a local uniqueness theorem 
for certain second order nonlinear elliptic differential equations in 
bounded domains of Rn with Dirichlet boundary data. 

EXAMPLE. Suppose <£: TJ—*F is Cr (r^l) and is a compact map 
(i.e., $ maps bounded subsets of U into relatively compact subsets 
of F)\ then at every # £ £ / the differential 3^(x) is a compact linear 
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map. (A partial converse of this assertion is known: If for each 
# G £/, $*(#) is compact and if <£.,.; U—>L(JS, F) is compact, then $ is 
itself compact [117, p. 51].) Now if <£: U—>F has the form x-^<f>{x) 
~A(x) +$ (x ) for a Fredholm operator A £ L ( E , i7), then </> is itself a 
Fredholm map with ind <£ = ind A. 

(E) We will not emphasize complex function theory in Banach 
spaces (and algebras), except to indicate the following broad lines of 
development. (1) If E and F are complex Banach spaces, a map </>: 
U-^F is holomorphic if and only if for any finite dimensional complex 
linear subspace S of E the restriction <jf>: Sr\U-^F is holomorphic. 
Then we have Cauchy's formula (&^0) 

kl r <i>(x + zv) 
dk${x: v, • • • , v) = I — dz. 

liriJ a"1 

(2) Domains of holomorphy in Banach spaces are studied in [14]. 
See also Douady [24a] for the theory of analytic spaces. (3) The 
Teichmtiller spaces of Fuchsian groups are represented as bounded 
domains in complex Banach spaces, and have natural complete 
Finsler structures relative to which complex differential geometry can 
be brought to bear; see §5G below. (4) Certain manifolds, such as the 
Grassmannians of complex ^-planes in complex Hubert space, have a 
natural (homogeneous) complex structure and admit a good global 
complex differential geometry. 

(F) There are several variations of the notion of class Cr of a map 
cj>: U-+F which have applications. For instance, (1) we could require 
that all differentials d*0: U-*SLk(Et F)(fe<tr) be uniformly continu
ous on U\ that has been useful in establishing differentiability of 
solutions of certain second order ordinary differential equations [43], 
[77], [54] and in the theory of Banach Lie groups [74, §6]; (2) we 
could require that these differentials be continuous in smaller locally 
convex topologies on SLk(E, F). Tha t is a convenient device in the 
study of the relationship between closed linear operators and analytic 
1-parameter semigroups, using the strong operator topology [50]. I t 
also arises in attempting to impose a differentiable manifold structure 
on spaces of solutions of differential equations—in such a way that 
the tangent space at a given solution is the totality of solutions of a 
linearized problem (relative to that solution), and that these tangent 
spaces vary differentiably ; see [109] for an application. 

(G) I t is important to extend the theory of Cr-maps of Banach 
spaces to maps of more general complete locally convex topological 
vector spaces—at least to Fréchet and nuclear spaces. (There are 
many applications awaiting such a theory; e.g., in nonlinear f une-
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tional analysis in the Fréchet spaces of C00 real functions on an open 
UCRn\ in the Montel spaces of real analytic functions in such U 
(with their van Hove topology [119]); in a study (undertaken by J. 
Leslie and R. Abraham) of groups of diffeomorphisms of a compact 
C00 or analytic manifold ; in the structure theory of certain groups of 
units of locally convex topological algebras (possessing continuous 
inverses near the identity)). There seems to be substantial difficulty 
in developing such a theory in a strictly topological framework : com
positions do not behave well, and the inverse function theorem is 
false, as we will see in the following example. There have been several 
at tempts to circumvent these difficulties; in particular, one by Bas-
tiani [ó]. The central idea here is to replace the locally convex topol
ogies of E and Lk(E, F) by a different sort of convergence, which still 
respects algebraic operations and locally convex structures. 

EXAMPLE. The inverse function theorem is false for separable 
Fréchet spaces, with any reasonable definition of differentiability: 
Let E = F be the space of all continuous real functions on R. Then 
with the topology of compact convergence E is a multipUcatively 
convex commutative algebra such that every neighborhood of the 
function 1 contains functions which assume negative values on JR, 
and therefore which do not have inverses. Clearly the exponential 
map exp: E—>E is well defined, is injective and carries 0 into 1; its 
differential must be exp j jc(0)=7. However, no neighborhood of 1 is 
the image under exp of a neighborhood of 0. (In contrast, the space of 
real analytic functions on a compact interval with the van Hove 
topology is a complete locally convex algebra having continuous in
verses near 1 (see [119]) ; that essential difference between these two 
algebras was pointed out to me by C. Herz.) 

3. Lie groups and algebras. 
(A) There is a satisfactory local theory relating (Banach) Lie alge

bras and (Banach) Lie groups, due primarily to G. Birkhoff [9]. A 
(Banach) Lie algebra is a Banach space L which is a Lie algebra (over 
R) relative to a bilinear map x, y—»[x, y] of LXL—>L> and such that 
| [x, y]\ ^\x\ \y\ for all x, yÇîL. A (Banach) Lie group germ is a 
topological group germ modeled on a Banach space, whose group 
operations are real analytic. (It suffices [74, §7] for analyticity that 
these operations be uniformly C3; furthermore, all differentiability 
hypotheses can be weakened substantially.) As in the finite dimen
sional case, there is a bijective correspondence G—>L(G) between (Ba
nach) Lie group germs and (Banach) Lie algebras. As usual, the Lie 
algebra will be identified with the tangent space to the neutral ele
ment of the Lie group germ. Homomorphisms of Lie algebras cor-
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respond (via the differential) to local analytic homomorphisms of the 
Lie group germs; closed Lie subalgebras (resp., ideals) correspond to 
Lie subgroup (resp., invariant subgroup) germs [9], [27], [66], [74]. 
If G is a Lie group germ, K a closed invariant subgroup germ which 
splits in G, then G/K has the induced compatible structure of a Lie 
group germ with Lie algebra L(G)/L(K) [74]. Canonical coordinate 
charts can be introduced in a neighborhood of the neutral element 
of a Lie group germ, relative to which group multiplication is ex
pressed by an absolutely convergent series involving the Lie bracket; 
the associated exponential map defined in a neighborhood of 0 in the 
Lie algebra carries straight lines through 0 bijectively onto 1-param-
eter group germs. 

In contrast to the finite dimensional case, not every Lie group 
germ can be enlarged to a global Lie group. A general method of 
producing examples (set in the framework of Banach Lie algebra 
cohomology) is given in [118], along with the following criterion for 
enlargability: 

If L is a Banach Lie algebra of a global connected and simply con
nected Lie group G and A a closed ideal in L, then the quotient algebra 
L/A is the Banach Lie algebra of a global Lie group if and only if A 
generates {through the exponential map) a closed subgroup of G. 

(B) EXAMPLE. Let A be an associative Banach algebra with unit 1, 
and G(A) its group of units (i.e., the elements of A which have multi
plicative inverses). Then G(A) is an open subset of A, and is a Lie 
group whose Lie algebra is A, with bracket defined by [u, v] =uv—vu 
for all u, v£A. The analytic map exp: A-+G(A) is given by the 
familiar power series exp(^) = ^2uk/k\. 

Now take a real Hubert space £ , let A — L(E) =L(E, E), (a non-
separable Banach space in general, even if E is separable), and de
note by B the closed Lie subalgebra of A consisting of the skew-sym
metric operators (u* — — u). Then B is the Lie algebra of the closed 
Lie subgroup 0(E) of GL(E) of the orthogonal (v*v = l) automor
phisms. If E is infinite dimensional, the exponential map exp: B 
—>0(E) is not surjective [96], although 0(E) is connected. If u£;L(E) 
is symmetric, then exp(u)(E:P(E) (ZGL(E), where P(E) denotes the 
open convex cell of symmetric positive definite ((u(x), x)^c\x\2 for 
some c>0 and all X £ J E ) automorphisms. Furthermore, the product 
map induces an analytic diffeomorphism of 0(E) XP(E) onto GL(E) ; 
[64, p. 102]. 

A theorem of Kuiper [61 ] asserts that if E is any infinite dimen
sional Hilbert space, then 0(E) and hence GL(E) is contractible. (A 
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similar result with a smaller topology on GL(E) was given by Dix-
mier-Douady [24, Lemme 3].) Kuiper's theorem is also valid for 
Hubert spaces (separable or not) over the complex and quaternion 
fields. Recently D. Arlt has shown that GL(c0) is also contractible; 
and in contrast A. Douady has found that GL(EXco) is not even con
nected, where E is a separable Hilbert space of infinite dimension. 

The totality of ^-planes through the origin in a separable infinite 
dimensional Hilbert space E forms a manifold BO(p) which can be 
represented as a homogeneous space of the Lie group 0(E), and has 
the homotopy type of the limit space 

lim 0(k + p)/0(k) X 0(p), 

where 0(k)=0(Rk), of the Grassmannians of ^-planes in Rk+p. If 
EO(p) is the homogeneous space of orthonormal ^-frames in E, then 
the natural coset map EO(p)—>BO(p) is an analytic universal prin
cipal 0(£)-bundle. For instance, if we take p = l, then E0(1) is the 
unit sphere in E, and B0(1) is the infinite dimensional real projective 
space; the bundle E0(1)—>i30(l) can also be realized as the normal 
0-sphere bundle of a l-codimensional projective subspace of B0(1). 

(C) EXAMPLE. If £ is a separable infinite dimensional Hilbert 
space and C(E) is the totality of compact linear endomorphisms of E, 
then C(E) is the only closed proper bilateral ideal of L(E) (as an 
associative Banach algebra). The set GC(E) of all elements of GL(E) 
of the form 1+w, where w£C(E) , is an invariant closed Lie subgroup 
whose Lie algebra is C(E) ; GC(E) has precisely two components. 

By means of an orthonormal base (ek)k^i in E we have the imbed-
dings GL(Rn)-^GL(Rn+1)-^GC(E) for all w^O; it is known [90 ], 
[ l l 5 ] that these inclusions induce a homotopy equivalence 

lim GL(Rn)-*GC(E). 

The left member is the direct limit of the groups GL(Rn) ; its homo
topy properties are now well known through the periodicity theorems 
of Bott [12]. Palais [90] goes on to establish the corresponding re
sult for certain other Banach algebras of operators on E (contained 
algebraically in C(E)), including the algebras of Lp-operators 
( l g £ < o o ) . 

Let GrC(E)={vGGC(E):v(ek)=ek for all k>r}, and GrC(E) 
= {^GGC(E): v(ek) =ek for all k^r}. The homogeneous spaces 
Vr = GC(E)/GrC(E) and Vr = GC(E)/GrC(E) are called the Stiefel 
manifolds of r-frames and r-coframes of C(E)-vectors. We have the 
successive fibrations 
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/ = Vo <- Vi <- V2 <- • • • 

GC(E) = F° -> V1 -> F2 -> • • • . 

Every F r is contractible, and F r has the homotopy type of 
VQim^, L(R»)) [75]. 

If p:L(E)-+L(E)/C(E) is the coset map and G = G[L(£) /C(£) ] 
is the group of units of the indicated quotient algebra, then p~lG 
is identified with the set g of Fredholm operators of E. The map 
p\%—>G is a Serre fibration with contractible fibres, and therefore 
[52; see also §4A below] p is a homotopy equivalence. Also, the 
identity component of G is isomorphic to GL(E)/GC(E)\ that latter 
group can then be used as the classifying space BO for real vector 
bundles. The following theorem is due to Jânich [52]: Using com
position of operators as addition and a multiplication derived from 
the tensor product, g has up to homotopy the structure of a com
mutative ring with unit, and those operations are continuous. 

For any compact space X the totality [X, %\ of homotopy classes of 
maps X—>g is a commutative ring with unit. There is a natural ring 
isomorphism [X, %]-+KO(X) = [Xy ZXBO] of [X, g ] onto the ring 
KO(X) of virtual real vector bundles over X. Here Z denotes the ring 
of integers. The isomorphism is constructed as a generalization of the 
notion of index of a Fredholm operator; the proof uses Kuiper's 
theorem on the contractibility of GL(E). See [12] for the definitions 
and properties of the functors KO and BO ( = the classifying space 
of the group limn+w GL(Rn)\ or 5 0 = limp^00 BO{p)). Completely 
analogous assertions are valid for the complex case; and an appropri
ate assertion can also be made for the case of the quaternion field. 

(D) EXAMPLE [31 ] . The following construction admits many vari
ations of the sort considered in §6 below. Let G be a connected Lie 
group of finite dimension with Lie algebra L(G), equipped with some 
inner product. We denote by E{G) the totality of absolutely continu
ous paths on G starting at the neutral element e and having square 
integrable tangent fields; thus E(G)=Zi(7 , 0; G, e) in the notation 
of §6D below. With group operations defined pointwise E(G) has 
the structure of a contractible Lie group modeled on a separable 
Hilbert space, and the Serre map p: E(G)—>G defined by p{x) =x(l) 
is a Lie epimorphism whose kernel fl(G) can be viewed as the Lie 
group of loops (of the indicated class) of G; furthermore, 
codim(E(G), 0(G)) = dim G. Its Lie algebra L(E(G)) =£(L(G)) , and 
the kernel of the differential p^\ L(E(G))~>L(G) is just L(Q(G)). (In 
the special case that G is compact and semisimple and we take the 
negative of the Killing form on L(G) for its inner product, then 
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([x, y], z) = (x, [y, z\) for all x> y, zÇ:L(G)\ however, we do not have 
the corresponding relation in L(E(G)), so that L(E(G)) should be 
viewed as a Banach, not as a Hilbert, Lie algebra.) 

Now suppose that K is a closed subgroup of G, and let ir: G—+G/K 
*=B be the (left) coset map. If E(G, K) =p~l(K) and \ = 7r o £ then 
E(G, K) is a closed Lie subgroup of E{G), and X: E(G)—±B is an analyt
ic universal principal E(G, K)-bundle; thus E(G, K) is a Lie group 
serving as the loop space of B. 

(E) For further applications relating Banach algebraic and differ
ential topological ideas we refer to 

(1) Dixmier-Douady [24] and Tomiyama-Takesaki [116] for 
studies of C*-algebras and continuous fields of Hilbert spaces by the 
methods of cohomology and fibre bundles; 

(2) Royden [103] for a theorem of Arens-Royden relating the co
homology of the spectrum of a commutative Banach algebra to its 
group of units; 

(3) Wood [121 ] for a proof and generalization of the Bott period
icity theorem in the setting of Banach algebras. 

(4) Myers [85] and Pursell-Shanks [95] for theorems giving the 
structure of a compact Cr-manifold in terms of its algebra of Cr-
functions. 

4. Manifolds and fibre bundles. 
(A) A manifold (CQ-manifold) modeled on a locally convex topological 

vector space £ is a Hausdorff topological space X such that with each 
point xÇzX there exist a neighborhood Ux and a homeomorphism 
Ox of Ux onto a convex open subset of E with 6x(x)=0] the pair 
(ox, Ux) is called a chart of X centered at x. Clearly X is completely 
regular and locally contractible; in particular, every component of X 
is open. Assume that E is metrizable; then applications of theorems 
of A. Stone and Y. Smirnov show that X is metrizable when and only 
when X is paracompact. If every component of X satisfies the second 
axiom of countability, then X is metrizable [92]. If X is paracom
pact, then the components of X satisfy the second axiom of count-
ability if and only if E does [75]. 

HYPOTHESIS. Henceforth we suppose that X is a paracompact mani
fold modeled on a metrizable locally convex topological vector space E. 

A theorem of Dugundji [25] asserts that any convex set in a locally 
convex topological vector space is an absolute retract. (A space U 
(usually assumed to be metrizable) is an absolute retract if for any 
metrizable space My closed subset AC.M, and continuous map 
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ƒ: A —>U there is a continuous extension to a map M—*U; if every ƒ 
can be extended to a neighborhood of A in M, then we say that U 
is an absolute neighborhood retract.) Dugundji's theorem insures 
furthermore that we can extend a n y / : A—>U so that the extension 
has its image in the convex envelope oî f(A). General principles and 
a theorem of O. Hanner then imply the following result (proved 
by the author in connection with his version of the Lefschetz fixed 
point theorem (§11D below), utilizing a method of W. Hurewicz. 
An independent proof appears in [92]). 

If X is a paracompact manifold modeled on a metrizable locally con
vex topological vector space, then X is an absolute neighborhood retract. 
X is contractible if and only if X is an absolute retract. 

I t is a consequence of a theorem of J. H. C. Whitehead that if X 
and Y are two such manifolds and ƒ: X—>F a continuous map inducing 
isomorphisms f^ : Wi(X)-->7r»( Y) of the homotopy groups for all i è 0, then 
f is a homotopy equivalence. Theorems of O. Hanner and J. H. C. 
Whitehead [78] imply that if X is separable, then it has the homotopy 
type of a countable locally finite simplicial polyhedron. 

If X is given a metric, then X can be isometrically imbedded as a 
closed subset of a normed linear space, having a neighborhood U with 
X as a retract (i.e., there is a continuous m a p / : U—>X which is the 
identity on X) [4]. If the model E is complete, then we can always 
so imbed X topologically as a closed subset of a Banach space. In 
particular, the topology of X can be given by a complete metric, so 
that X is a Baire space (i.e., a space such that any countable union 
of closed sets having no interior points has no interior point). X is 
locally compact if and only if its model E has finite dimension, by 
a theorem of F. Riesz; thus a component of X is expressible as a 
countable union of compact sets when and only when X is finite 
dimensional. 

(B) Let X be a manifold modeled on a Banach space E. A Cr-
structure on X (1 ^ r ^ <*>) is a subsheaf of the sheaf of continuous E-
valued maps on X which is locally isomorphic (through charts) to 
the sheaf of E-valued Cr-maps on E\ similarly for the notions of real 
and complex analytic structures. Tha t amounts to saying that a Cr-
structure is a maximal covering of X by charts such that all maps 
(between the indicated open subsets of E) 

(2) e„ o e:1: e£(uz n u«) -> e*(u, n u«) 

are Cr. A Cr-manifold is a C°-manifold with a specific Cr-structure, 
For r > 0 we have the related notion of Cr-manifold with boundary; 



i966] A SETTING FOR GLOBAL ANALYSIS 767 

however, there is not a suitable definition in case r = 0 and the mani
fold has infinite dimension, due to the absence of invariance of do
main (See §11B below.) Indeed, Klee [56] has constructed a homeo-
morphism of a separable Hubert space onto a closed half-space. A 
Cr-map f:X—»F of Cr-manifolds is a map which respects the Cr-
structures: For any Cr-charts (0, [/), (x, TO o n X$ Y the composition 
Xo/o0-1 :0(C7)->x(V r) i s a Cr-map. A bijective Cr-map ƒ with Cr-
inverse is a Cr-diffeomorphism. 

If Eo is a closed linear subspace of the model E and A a closed sub
set of the (^-manifold X such that for every x £ i there is an x-
centered chart (0, U) of X such that 0 maps UT\A homeomorphically 
onto 6(U)r\Eo, then these restrictions determine a Cr-structure on 
^4, and A is called a closed Cr-submanifold of X. A Cr-imbedding (resp., 
a Cr-immersion) ƒ: X—»F is a Cr-map which is a Cr-diffeomorphism 
(resp., locally a Cr-diffeomorphism) onto a closed submanifold of F. 
Say that the imbedding or immersion splits if its model E0 is a direct 
summand of E (and be advised that some authors [2], [64] incor
porate the splitting requirement into their definition of closed sub-
manifold). There is a concept dual to a split Cr-immersion : A Cr-
map ƒ: X—>Y is called a split Cr-local fibration if for all x £ X there 
are Cr-charts (0, U), (x> TO centered at x, f(x), where 0: U—^UiXU2 

maps U onto the product of two open sets in a product representation 
E i X & = £ of the model of X, such that the composition x o ƒ o 0_1: 
£/iX t/2—>x(TO is a projection. 

The following generalization of Whitney's imbedding theorem has 
been proved by McAlpin [75]; see also [18]: 

Every separable O-manijold modeled on a separable Hilbert space 
can be split Cr-imbedded as a closed submanifold of a separable Hilbert 
space. 

(C) There is a theory of Cr-vector bundles whose fibres are Banach 
spaces; its broad outline follows that of the finite dimensional case 
[64]. Of course, we must check certain technical aspects: (1) A 
C°-vector bundle whose fibres are Banach spaces over a C°-manifold 
is metrizable [92]. (2) In arguments involving partitions of unity 
we should suppose that the base manifolds are modeled on Cr-smooth 
Banach spaces; e.g., the sheaf of Cr-sections of a Cr-vector bundle 
over a Cr-manifold with Cr-smooth model is soft (i.e., any section over 
a closed subset of the base admits an extension over all the base). 
(3) In dealing with sequences 

0 - > i - ^ 5 - t c - > 0 
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of vector bundles over X we need a special notion of exactness: Say 
that this sequence is exact if the restriction <f>\ AX—>BX of the bundle 
map 0 to the fibre over every point x Ç J is a continuous injection, 
the restriction \l/:Bx—>Cx is a continuous surjection with Ker(^) 
= Im($), and every <}>{AX) is a direct summand of Bx. This last re
quirement insures a suitable local product structure for the maps 
<£, \[/. (4) There are many different tensor products of vector bundles, 
depending on the choice of topological tensor product in the fibres. 

(D) Let X be a Cr-manifold (r ^ 1) modeled on a Banach space E. 
Then as in the finite dimensional case [114] the differentials 
{Ox' o Ç1)* of the coordinate changes (2) define transition maps of a 
principal bundle GL(X)—>X with structural group GL(E), called the 
principal bundle of X, GL(X) has the structure of Cr_1-manifold. 
From Kuipers theorem (§3B) we obtain the result: 

Every paracompact infinite dimensional Cr-manifold (r ^ 1) X modeled 
on a separable Hilbert space is Cr~l-parallelizable. I.e., its principal 
bundle is Cr~^isomorphic to the product bundle XXGL(E). 

From the natural action of GL{E) on E we obtain the associated 
tangent vector bundle T: T(X)—>X; each fibre 7r~l(x) = X(x), called the 
tangent vector space to X at Xy is a Banach space—but does not have 
a preferred norm in general, even if E does. A C r-map/: X—* Y induces 
through its differential a O ^ - m a p T(J): T(X)—>T(Y) which is linear 
and continuous on each fibre. Similarly for the various tensor bundles 
of X. 

(E) If/: X—>Y is a split Cr-immersion, then the sequence 

(3) 0 -> T(X) ->f~ lT(Y) ^f~1T(Y)/T(X) -> 0 

is exact, wheref~lT(Y)~->X is the induced vector bundle. If/: X—»F 
is a split CMocal fibration, then there is a subbundle A—>X, called 
the bundle along the fibres, which is the kernel of the differential of ƒ, 
such that the sequence 

(4) 0 -> A -» T(X) -+ f~lT(Y) -* 0 

is exact. I t may not happen that these exact sequences themselves 
split as Cr~~^bundles; however, they do if X is modeled on a CT-
smooth Banach space. In that case a choice of splitting in (3) identi
fies f~lT(Y)/T(X) with a subbundle of f~lT(Y) supplementary to 
T(X), called a transverse bundle of X in Y. Similarly, a splitting in (4) 
iden t i f i es / _ l r (F) with a supplement of A in T(X) called a horizontal 
subbundle. 

An application [32], [64] of the inverse function theorem gives the 
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following result (as formulated in the finite dimensional case by R. 
Thorn). 

Let ƒ: X—>Y be a O-map (r>l) of manifolds modeled on Banach 
spaces. Let B be a closed split imbedded Cr-submanifold of Y on which 
ƒ is transversal {i.e.., for every xÇ:f~~l(B) the differential f%(x):X(x) 
—>F(/(x)) is transversal to B(f(x)) in the sense of §1C). Then A =f~l(B) 
is a closed split imbedded Cr-submanifold of X. 

If codim (F , B) = g < oo, then codim (X, A) =q< <». Also, if dim B 
< oo and ƒ is a Fredholm map of connected separable manifolds, then 
dim A —dim B = ind( / ) ; Smale [ i l l ] has shown (as a consequence of 
results of §2D) that for any Fredholm Cr-map ƒ: X—»F there is a C1-
approximation to the imbedding B-+Y on which f is transversal, pro
vided that r>max(0 , i nd ( / )+d im B). 

EXAMPLE. The diagonal A = {(y, y ) £ FX F} is a closed split im
bedded submanifold of YXY, with transverse bundle isomorphic to 
7 \ F ) . Two maps / i , /2 :X—»F are transversal if the product map 
/ i X / 2 : X X X - > F X F is transversal on A. Then (/iX/2)~1(A) is a 
closed split imbedded submanifold of X X X ; its intersection with the 
diagonal of X X X is identified with the coincidence set T(/i, ƒ2) 
= { x £ X : fi(x) =f2(x)}. This situation occurs frequently in applica
tions; for instance, let £: F—>X be a Cr-vector bundle and a a Cr-
section (i.e., a Cr-map cr: X—>F such that £ o cr(x) —x for all x £ X ) . 
If f is the zero section, then T(o", J") is just the locus of zeros of <r; the 
condition that cr, f be transversal is a nondegeneracy hypothesis on cr. 

(F) If X is a Cr-manifold ( r ^ 2 ) modeled on a Banach space, then 
its tangent bundle T(X) is a O^-manifold. The totality Cr-\T{X)) 
of Cr~l sections (i.e., of Cr~l maps v: X-^T(X) such that w o v(x) =x 
for all x £ X ) forms a vector space, with algebraic operations defined 
pointwise ; these sections are called vector fields on X. The Poisson 
bracket [u, v] of two vector fields is defined as an element of Cr~2(T(X)) ; 
in particular, if r = 00, then the bracket defines a Lie algebra struc
ture on C°°(r(X)). 

The trajectories of a vector field vÇzCr~~l(T(X)) are the solutions of 
the differential equation 

d(j)t(x) 
— — = v(4>t(x)), 

at 

<l>o(x) — x, 

defined for some maximal interval ax<t<(3x of R containing 0. The 
existence, uniqueness, and differentiability with respect to the initial 
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conditions of such solutions follow from standard methods [23, 
Chapter X ] ; [64, Chapter IV]. The set D(v) = {(t, x)ERXX: 
ax<t<px] is an open neighborhood of 0XXy and on it the map 
(t, x)—*l>t(x) defines a 1-parameter group germ of Cr-1-diffeomor-
phisms of X, I t is a matter of basic importance to know when D(v) 
= RXX; i.e., when the trajectories are full. That is a question of the 
growth of v, and can be best described in terms of a Finsler or Rie-
mannian structure (see §5) ; in the case that X is a separable complete 
Riemannian manifold good criteria are given in [68]; e.g., every tra
jectory of finite length is full. See also §8 below for the case of gradient 
fields. 

The integrability theorem of Frobenius is valid for Cr-manifolds 
( r ^ 2 ) modeled on Banach spaces [23], [64], [73, Part I I ] ; we state 
the result for r = <*> : 

Let S be a C°°-vector subbundle of T(X) for which every fibre Sx is a 
direct summand of X(x). Then the space C°°(5) of sections is a Lie sub-
algebra of C^TXX)) if and only if S is integrable\ i.e., X is a leaved 
manifold having S as the tangent bundle of the leaved structure. A split 
C°°-local fibration ƒ: X—» Y provides an example of this situation; see 
§5G. 

(G) Let X be a C°°-manifold modeled on a separable Hubert space, 
and ApT*(X)-~>X its vector bundle of p-covectors; its fibre over x 
can be identified with ALp(X(x), JR), the Banach space of continuous 
alternating ^-linear forms on X(x). Denote by AT*(X) the direct 
sum of these bundles for all £ £ Z ; then the vector space CCC(AT*(X)) 
of C°°-sections, which are called differential forms on X, is a graded 
associative algebra (over R) with unit, and commutative (in the 
sense that 0 A * = ( - 1 ) P < ^ A * if ( ^GC M (A^*( I ) ) , ^GC*(A«r*(X)) . 
There is a linear map d: C0 0(A^r*(X))->C0 0(A^1r*(Z)), called the 
exterior differential, which is a derivation {d{<f>/\4/) =d<j>/\\f/ + ( — l)p(l> 
/\d\j/ with <£, yp as above), which has square zero (d(d<j>) = 0), and which 
assigns to each function <^GC°°(Aor*(X)) its differential. The space 
5C*(X) =Ker(d)/lm(d) is therefore a graded commutative algebra 
with unit, called the de Rham cohomology algebra of X. 

A p-simplex of class C00 of X is a C°°-map 5 : Ap—>X of a neighbor
hood of an oriented rectilinear ^-simplex Ap of Rp ; a p-chain of class 
C00 of X is a finite linear combination (over R) of such ^-simplexes, 
and the boundary dc of a ^-chain c is defined as usual in algebraic 
topology. The ^-chains constitute a vector space SP(X), and d : SP(X) 
—>Sp-i(X) is a linear map satisfying d(dc)=0 for all cÇzSp(X); if 
S(X) denotes the direct sum of the SP(X) for all pGZ, then d is an 
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endomorphism of S(X), and we define the graded vector space 
H(X) =Ker(3) / Im(d) , the real homology group of X, H(X) is a 
homology invariant of the space X. 

For any p-îorm 0eC,oo(A»T,*C2O) and £-chain cESp(X) we define 
the Riemann integral of <j> over c in the familiar manner, using the 
transformation of integral formula. Then we have Stokes' theorem 

J c J dc 

so that the integral induces a bilinear pairing 

3Z*(X) X HP(X) -» R. 

Otherwise said, each de Rham cohomology class (<£)£3CP(X) thereby 
defines a linear form on the homology group HP{X)1 and thus a co
homology class in HP(X) =Hom(fl"p(X), R). We obtain the following 
generalization of de Rham's theorem [29]: 

Let X be a separable C^-manifold modeled on a separable Hubert 
space. Then integration defines a degree-preserving algebra isomorphism 
of the de Rham cohomology algebra 3C*(X) onto the real singular co
homology algebra H*(X). 

Several specific representations illustrating this theorem are given 
in [31 ], [118]; the latter paper uses 2-forms on certain Banach Lie 
groups to construct central extensions (for the purpose described in 
§3A). 

5. Differential geometry. 
(A) Certain aspects of local differential geometry (tensor analysis, 

linear connections and covariant derivatives, geodesies, curvature 
forms and sectional curvature, leaved structures) in open sets of 
Banach spaces made their appearance in one form or another many 
years ago; we refer to [77], [55], [65] and the references in [77] for 
various treatments. Practically no global differential geometry has 
been developed for manifolds modeled on Banach spaces other than 
Hubert spaces; however, it seems likely that infinite dimensional 
Finsler geometry will play an important role in the future. 

The foundations of modern differential geometry center around 
the theory of integrable G-structures (for arbitrary Lie groups G). 
We will not deal in that generality here; however, let us remark in 
passing that there is an interesting aspect of the general theory 
peculiar to the infinite dimensional case : For a O-manif old X modeled 
on a Banach space E we take G = GC(E)} as in §3C. Then an intégra-
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ble GC(E) -structure on X is determined by a covering of X by co
ordinate charts, the differentials of whose coordinate changes (2) lie 
in GC(E). 

We now examine certain elementary properties—local and global— 
of Riemannian geometry, thus taking G = 0(E); the integrability 
question does not arise. For the most part, the local theory follows 
the finite dimensional case; the global theory is substantially differ
ent. In this section it is less important to be precise about the differ
entiability classes of manifolds and bundles; we therefore often take 
r = oo. 

(B) Let X be a C°°-manifold modeled on a Banach space E, and 
£: V—>X a C°°-vector bundle whose fibres are Hubert spaces. We can 
then form the vector bundle SL2(V, R)—>X whose fibre over any 
point xÇzX is the space of continuous symmetric bilinear forms on 
the fibre ^(x) — Vx. A C™-Riemannian structure on £ is a C°°-section 
of SL2(Vy R)—>X which is positive definite at every point x, and 
which as an inner product on Vx determines its Hilbert space struc
ture. If the model E of X is C°°-smooth, then any such vector bundle 
£ admits a C00-Riemannian structure; furthermore, these Riemannian 
structures on £ correspond bijectively to reductions of the general 
linear group of the fibre to its orthogonal group [64, Chapter VI I ] . 

Let C°°(V) denote the vector space of C°°-sections of £. A covariant 
differential on £ is a map V: C0 0(r(Z))XC0 0(F)->C c o(F), written 
V(u, <t>) = Vw<£, such that (1) the map u-^Vu<fi is C^(XXR)-linear for 
each0GC°°(TO; (2) themap</>->VM<^isJR-linearforeach^GC ,00(r(Z)); 
(3) Vu(y<f>) = (Vuy)<t>+yVu<l>îor e a c h ^ G C ^ F ) , y<EC«>(XXR), where 
Vuy = dy-u. (A covariant differential on £ is equivalent to a linear 
connection on £.) The curvature of V is the map R: C°°(T(X)) 
XC 0 0 ( r (Z))XC 0 0 (F)-^C 0 0 (F) given by 

(5) R(uh u2)<t> = VWlVW20 — VU2VUl<t> — V[W1,W2]0. 

We have associated differentials for the adjoint bundle £*, for tensor 
powers of £ and of £* and for direct sums and tensor products of 
bundles with covariant differentials. 

A C™-Riemannian bundle £: V—>X consists of a pair (V, g), where 
V is a covariant differential on £, gÇzC°°(SL2(V, R)) is a Rieman
nian structure, and Vwg = 0 for all w£C°°(r(X)) . 

(C) Suppose that the C°°-manifold X is modeled on a separable 
Hilbert space £ . A Riemannian structure on X is a C°°-Riemannian 
structure g on its tangent bundle ir: T(X)—>X (and we say that X 
is a Riemannian manifold) ; these are in natural bijective correspond
ence with the C°°-sections of the associated bundle of the principal 
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bundle GL(X)-*X whose fibre is the cell P(E)~GL(E)/0(E). The 
value of g at x is sometimes written gz(u ®v) = (u, v)x for all u, vÇ£X(x). 
The fundamental theorem of Riemannian geometry is the following: 

Let (X, g) be a Riemannian manifold. Then there is a unique co-
variant differential V (called the Levi-Cività differential of (X, g)) on 
the tangent bundle making it into a Riemannian bundle^ for which the 
torsion 

(6) T(uh u2) = VU1(«2) — VW2Oi) — [uh u2] 

vanishes f or all ui, u2E:C00(T(X)). 

The Riemannian structure g determines a metric p on X which is 
compatible with its given topology ; namely, given any two points Xo, X\ 
in the same component of X we define the distance 

(7) p(*0> *i) = inf < ƒ | y'(t) |7(0<ft> 

over all piecewise differentiable paths 7 : I—>X joining x0 to xi, where 
IVWUco denotes the g-norm of the tangent vector yf(t)^X(y(t)). 
A consequence of McAlpin's imbedding theorem is the following: 

Every separable C°°-manifold modeled on a separable Hilbert space 
admits a complete Riemannian structure g; i.e., the metric (7) deter
mined by g is complete (in the sense of Cauchy sequences). 

More generally, we say that a C^-manifold X modeled on a Banach 
space is a Finsler manifold if we have a continuous assignment of a 
norm to each tangent space which is compatible with its Banach 
space structure, locally uniformly on X; then, as above, every X 
admits a Finsler structure which determines a metric on X compati
ble with its topology [89], [9 l ] ; see also [67]. 

(D) Let X be a Riemannian manifold, and x £ I . Given two ortho-
normal vectors u, vÇzX(x) we define the sectional curvature of the 
plane direction u/\v (exterior product of the vectors) determined by 
them through the formula 

K(u A v) = (Rx(v, u)u, v)x 

where Rx denotes the curvature (5) of the Levi-Cività differential at 
x. An immediate extension of the Clifford-Klein theorem [75], [77] 
gives: 

If X is a simply connected complete Riemannian manifold of infinite 
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dimension and constant sectional curvature, then X is isometric to the 
infinite dimensional elliptic, parabolic, or hyperbolic space. 

In particular, if G is a finite group of isometries operating freely 
and differentiably on the unit sphere S in infinite dimensional sepa
rable Hilbert space, then the orbit space S/G is a Riemannian mani
fold of constant positive curvature representing the classifying space 
BG for G. 

(E) If X is a Riemannian manifold, then its Levi-Cività differen
tial V determines the notion of parallel transport along a C°°-path 
7 : 7—>X; in particular y is a geodesic (segment) if its tangent field 
7 ' is parallel along 7; i.e., 7 satisfies the Euler equation VT /(7')=0 
along I. All geodesies on a complete Riemannian manifold are full. 

For every point x of a complete Riemannian manifold X there is a 
C°°-map exp*: X(x)—>X defined by letting expx(u) be the endpoint 
of the geodesic segment emanating from x and determined in length 
and direction by the vector u. Local properties of exp* produce the 
result: Every point of X has a convex neighborhood; i.e., a neighborhood 
U such that any two points in U can be joined by a unique geodesic 
segment lying in U whose length is the distance between its endpoints. 
Furthermore, we have the following generalization of a theorem of 
G. de Rham [75]: 

Any separable Riemannian manifold X admits a countable open 
cover U by sets all of whose intersections are convex. 

I t follows upon application of a theorem of J. Leray that the co-
homology of X is canonically isomorphic to that of the nerve of U. 
On the other hand, and in defiance of the fact (Section 4A) that X (if 
separable) has the homotopy type of a locally finite polyhedron, we 
have the theorem of Corson [20]: There is no locally finite cover of a 
reflexive Banach space of infinite dimension by bounded convex sets. 

Another consequence of the existence of convex neighborhoods is 
the following: 

If X is a closed C^-submanifold of the Riemannian manifold Y, 
then there is a tubular neighborhood U of X in Y. Furthermore, the 
diffeomorphism type of U is unique. 

Thus U is diffeomorphic to the normal vector bundle of X in Y, 
and X is a strong C°°-deformation retract of U. For a discussion of 
the existence and uniqueness of tubular neighborhoods in ^ -mani 
folds modeled on other Banach spaces, see [64, Chapter IV]. 

(F) Let X be a connected complete Riemannian manifold. I t is not 
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known whether the map exp*: X(x)-*X is surjective in general. The 
situation is complicated [47] in the infinite dimensional case by the 
fact that the differential of exp* may be neither injective nor surjec
tive at a conjugate point of x. Furthermore, it is not always possible 
to join two points by a geodesic segment of minimum length. A sim
ple example [46], [75] is obtained by studying the geodesies joining 
the axis points of an infinite dimensional ellipsoid in Hilbert space; 
such a manifold is contractible and has strictly positive sectional 
curvatures at every point. 

We do have a generalization of the Cartan-Hadamard theorem, due 
independently to McAlpin and Grossman [46], [75]; see also [47] 
for a variant: 

If X is a connected complete Riemannian manifold of nonpositive 
sectional curvature, then for any point XELX the map expx: X(x)—>X is a 
surjective C^-covering. 

In particular, if X is simply connected, then it is diffeomorphic to 
Hilbert space; and there is a unique geodesic segment joining any 
two points, whose length equals the distance between them. 

(G) For a surjective Cx-map ƒ: X—» Y" of C^-manifolds modeled on 
Banach spaces, we have described in Section 4B conditions on the 
differential of ƒ which imply that ƒ is a split CMocal fibration. We 
now impose differential geometric restrictions sufficient to insure that 
ƒ is a global fibration. Let a and ]8 be Finsler structures on X and F. 
If s:f~1T(Y)—>T(X) is a locally Lipschitz splitting of the vector 
bundle sequence (4)—such a splitting always exists—we say that 5 
is bounded locally over Y if for each y0G. Y there is a number rj0>0 
and a neighborhood V0 of yo such that ||sOxO||*^7?o for all xÇzf-~l(V0); 
here the norm of s(x) is that of L(Y(f(x), X(x)) induced from the 
norms ax, j3/(X). We have the following theorem [28]: 

Let (X, a ) , (F , ]8) be Finsler Cl-manifolds, and suppose that X is 
complete in the metric associated with a. Letf: X—>Y be a surjective C1-
map whose differential f^(x) at every xÇiX is surjective and whose kernel 
is a direct summand of X(x). If there is a locally Lipschitz splitting 
of (4) which is locally bounded over F, then f is a locally trivial fibration. 

Local triviality means that every 3/0 £ F has a neighborhood V for 
which f~l{V) is homeomorphic (preserving fibres) to V Xf~l(yo)- In 
a context in which 5 is Cr we can establish local Cr-triviality. 

We now give an application taken from the theory of deformations 
of complex structures, based on fundamental work of L. Ahlfors and 
L. Bers. 



776 JAMES EELLS, JR. [September 

EXAMPLE [28]. Let U be the open upper half plane in the space C 
of complex numbers, and L°°(Uy C) the Banach space of all bounded 
measurable complex functions on U. Let D = J 2 G C : |z | < l } , en
dowed with the complete Riemannian structure of constant curvature 
= —4, and let <JD be its associated metric. Denote by M = L°°(Uy D) 
the open disc in L°°([7, C) ; we view M as a complex analytic infinite 
dimensional (nonseparable) manifold modeled on LM(Ut C). Define 
the Finsler structure a on M at the point fiÇzM by 

a»(v) = sup { | P(Z)\(JL(Z):ZE U] 

for all vÇzL™(U, C), where |KZ)|M(*) denotes the Riemannian length 
of the vector v(z) in the tangent space D(n(z)) to D at jj,(z). Then the 
metric 

<KJUO, Mi) = sup {O-DOO(S), Mi(*)): * G U) 

is that associated with a, and (M, a) is complete. 
A theorem of C. B. Morrey insures that for each IÀ(~M there is a 

unique solution SÜ" of Beltrami's equation 

dw dw 

dz dz 

in C, normalized by requiring that 0, 1, oo remain fixed and that se;" 
be conformai in the lower half plane U*. Let B denote the complex 
(nonseparable) Banach space of holomorphic functions <f> in U* whose 
norm 

| 4>|s = sup{ | s - g | » | * ( * ) | : * e U*} < » . 

If [w]~(wf,/w'y--(w''/w')2/2 denotes the Schwarzian derivative 
(when defined), then the assignment jix—>[ze;/*] is a holomorphic map 
$ : M—>J5 whose image A = $ ( l f ) is a bounded open subset. 

For any Fuchsian group T (i.e., discrete group of Möbius trans
formations of U) let M(T) denote the subspace of T-invariant ele
ments of M, and A ( r ) = * ( M ( r ) ) ; A(r) is traditionally called the 
Teichmilller space of I \ The quotient Finsler structure on A(r) in
duced from that of M has associated metric equivalent to that of 
Teichmüller's metric. The hypotheses of the preceding theorem are 
satisfied, whence $ : M(T)—>A(T) is a locally trivial fibration (with com
plex analytic fibres). In particular, whenever A(T) is contractible (and 
that is the case if dim A(r) < oo or if T = e), we conclude that for every 
</>EA(r) the fibre &-l(<j>) is contractible. 

6. Manifolds of maps. In this section we endow certain function 
spaces of maps (or sections of a fibre bundle, more generally) with 



1966] A SETTING FOR GLOBAL ANALYSIS 777 

differentiable manifold structures, necessarily of infinite dimension 
in general. The basic idea here is that a function space £F(5, M) of 
maps of a space S into a space M often reflects much of the structure 
of M. In particular, if M is a differentiable manifold, under certain 
conditions we have an induced manifold structure on ^ (5 , M)\ the 
most important of these conditions are (1) that the topology on 
#(5, M) be larger ( ^ ) than the uniform topology; (2) that £F behave 
well under maps of S and M. We begin by illustrating these properties 
for special classes of maps of Banach spaces. 

(A) Suppose that E and F are Banach spaces, and that U is a 
subset of E. 

EXAMPLE 1. The totality of bounded maps <j>\ U—>F is a Banach 
space B(U> F) with algebraic operations defined pointwise, and norm 
\<t>\ B(u,F)=$up{\<l)(x)\ : xÇzU} ; thus convergence of a sequence in 
B(U, F) is precisely uniform convergence of that sequence on U. If 
F is a Banach algebra, then so is B( U} F). Any m a p / : Ui—>U2 induces 
through composition a bounded linear map f:B(U2, F)—>B(Ui, F). 
Dually, a map g: Fi—*F2 carrying bounded sets of F\ into bounded 
sets of F2 induces a map g:B(U, Fi)—>B(U, F2). 

The vector subspace BC(U, F) of bounded continuous maps is 
closed in B(Uf F); in general, J3C(!7, F) is not separable. Further
more, the evaluation map BC(U, F) X U—+F defined by (<£, x)—>4>(x) 
is continuous. Note that if U is compact and V is open in F, then the 
subset BC(U, V) = {4>EBC(U, F):cj>(U)CV} is an open submani-
fold. Ascoli's theorem gives the following characterization of the rela
tively compact sets [23, p. 137]. 

Let U be a compact subset of E. Then a subset A of BC(U, F) is 
relatively compact if and only if A is equicontinuous, and for each xÇzU 
the set A{x) of all </>(x) such that <j>ÇzA is relatively compact in F. 

EXAMPLE 2. Now suppose that U is open in E. Let BCr(U, F) de
note the Banach space of Cr-maps </>: U-+F all of whose differentials 
dk<t>(0^k^r< oo) are bounded on Uf with norm 

(8) | 4> \r = I <t> \BC\U,F) = sup < 2 \dk4>(x) \:xEU 

Thus BC°(U, F)=BC(U, F). If U is an open disc in £ , then that 
norm is equivalent to 

sup { | 4>(x) | + | dr<t>(x) \:xE U}. 

The space £C°°( U, F) = (V-o BCr( U, F) is a Fréchet space with metric 

• 
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The map which assigns to each <j>£:BCr(U, F) its fcth differential 
is a bounded linear map dk: BCr(U, F)->BCr~k(U, SLk(E, F)) 
( O g H r ) . If f£:BCr(Ui, U2), where Z7i and Z72 are open subsets of E, 
then ƒ induces a bounded linear map f:BCr(U2i F)—>BCr(Ui, F). 
Dually, we have the theorem [23, pp. 182-183, 2 ] : 

Let U be a compact differentiable n-manifold with boundary in the 
n-dimensional space E, so that BCr(Ui F) — Cr(U, F), the Banach space 
of all Cr-maps of U into F. Let G be a Banach space. If V is open in F 
and g&BCr+s(V, G), then the induced map g: BCr(U, V)-*BCr{U, G) 
is of class C8for allO£s£r. Again, BCr(U, V) is open in BCr(U, F). 
If U is open in E and dim F < co, then for any r à 1 the inclusion map 
BCr(U, F)-^BCr~l(Uy F) is compact. 

(B) Suppose that M is a separable C°°-manifold modeled on a 
separable Hilbert space E, with tangent vector bundle TT: T(M)—>M. 
If M has a complete Riemannian structure and w£M", we let 
expm: M(m)—*M denote the exponential map as in §5E; its associated 
metric is denoted by P=PM-

Let 5 be a compact topological space, and C=C(S, M) the totality 
of continuous maps x: S—+M; we give C the topology of uniform con
vergence (in this case, the compact-open topology). The metric pM 
on M induces an admissible metric on C by 

p{x, y) = sup {PM(X(S), y(s)) : s £. S}. 

C is separable and complete, because M is. The evaluation map 
C(5, M) X S-+M is continuous. 

The following result is fundamental, and is typical of the various 
modifications discussed in this section [29]: 

For any compact space S and separable C°°-manifold M modeled on 
a Hilbert space, the function space C(S, M) is a C^-manifold modeled 
on a separable Banach space. If M is imbedded as a closed submanifold 
of a Hilbert space V, then C(S, M) is a closed C00-submanifold of the 
Banach space C(5, V). A Riemannian structure on M induces a Finsler 
structure on C(S, M). 

The basic idea in the proof is to introduce some complete Rie
mannian structure on M, and then to proceed as follows: (1) Con
struct the tangent vector space C(x) to the map x £ C ( 5 , M) as the 
totality of continuous maps u: S—>T(M) such that T ou(s) = x(s) for 
all 5 G S; then C(x) is a Banach space with norm 
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| u \x = sup { I u{s) \x(s) :s E.S}. 

Note that C{x) = C(x~lT(M))} the space of continuous sections of the 
induced vector bundle x~~1T(M)—>S, through the map x: S—+M. (2) 
Use the exponential map of M to construct an ^-centered coordinate 
chart on C(S, M) ; namely, since x{S) is compact, there is a number 
\x>0 such tha t each point of M whose distance from any x(s) is less 
than \x is joined to x(s) by a unique geodesic arc of length <\x\ 
then the map 5—>(\[/(u) s = expx(s)u(s) gives a bijective correspondence 
yp between the X^-disc of C(x) centered at 0 and the X^-disc of C(S, M) 
centered at x\ whence a coordinate chart on C(S, M). (3) Use the 
differentiability of exp: T(M)—>M to prove that the transitions be
tween these charts are C°°-differentiable. 

The differentiate structure of C(5, M) is independent of the choice 
of the Riemannian structure on M, since a C°°-map g: Mi-^M2 in
duces a C^-map g: C(S, Mi)—>C(S, ikf2). Furthermore if g is an imbed
ding, then so is g. If f: Si-^-S2 is a continuous map of compact spaces, 
then f induces a C^-map ƒ: C(52, M)—*C(Si, M). If f is an inclusion 
map and aim. M< <*>, then f'is a C°-locally trivial fibration over f C(S2, M). 
(This last assertion is a slight modification of a theorem of K. 
Borsuk.) 

There are many variations of this example; beyond those described 
in the following sections, we mention three: (1) If 5o is a closed 
subset of S and Mo a closed submanifold of M, then C(S, S0; M, M0) 
= {xGC(S, M):x(SQ)CM0} is a closed submanifold of C(S, M). 
(2) If I f is a Cs+2-manifold modeled on a C5+2-smooth Banach space, 
then C(S, M) has a O-manifold structure [2]. The point is that we 
can use a Cs+2-partition of unity to construct a C*-spray [64] on M, 
which amounts to an exponential map exp: T(M)—>M having the 
properties required for the above construction. (3) We can view 
C(Sy M) as the space of all continuous sections of the trivial bundle 
SXM-^St and then generalize the theorem, replacing SXM by a 
nontrivial bundle with C°°-fibres. 

(C) Let 5 be a compact C°°-manifold, and 0 ^r < oo ; form the space 
C r(5, M) of Cr-maps x: S—>M with the topology of uniform con
vergence of all derivatives of orders 5*r. C°°(5, M) is dense in every 
Cr(S, M). If M is imbedded as a closed submanifold of a Hubert 
space V, then C r(5, M) is a closed subset of the Banach space Cr(S, V) 
with norm as in (8). 

For every 0 ^ r < oo the space Cr(S> M) is a C^-manifold modeled on 
a separable Banach space. A Riemannian structure induces a Finsler 
structure on C r(5, M). The same complementary remarks as in (B) 
apply here. In [24a] Douady has demonstrated an analogous theorem 
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for C8(S, M)—suitably defined—where 5 is a compact subset of a 
finite dimensional C8-manifold, M is an analytic manifold (real or 
complex), and s = r+a ( 0 ^ a < l and r^l is an integer. 

Furthermore, we have the following result [2]: 

Suppose that both S and M are compact C™-manifolds and that N 
is a C^-manifold modeled on a Hubert space. Then the composition 
induces a map 

Cr(S, M) X Cr+°(M, N) -> C'(S, N) 

which is C8. 

Similarly, taking 5 as a point we find that the evaluation map 
Cr(M, N)XM-+N is Cr. On the other hand, taking S = M=>Nf com
position defines an associative continuous multiplication in the mani
fold Cr(M, M) and a group structure in the Cr-diffeomorphisms of M, 
but the composition is not Cl (pointed out by R. Abraham). 

(D) For applications [35], [36], [94] to potential theory and the 
calculus of variations it is important to work in the context of Lp-
spaces, especially p = 2. We now produce manifold structures on cer
tain of these spaces. 

Suppose that S is a compact oriented Riemannian manifold of di
mension n\ we will write the volume n-ioxm of S as *1 . Fix a Hilbert 
space V. Then for any real number p (1 Sp S °°) let LQ(S, ^0 denote 
the Banach space of I>-maps from S to V with norm (9) below with 
r = 0. For any integer r ^ O let Lf(5, V) be the Banach space of such 
maps x, all of whose differentials dkx are of class Lv (0 ^fe ^ r ) , whose 
norm can be given by 

r f ( r \ p/2 ~\ljp 

(9) I * U?(S.F) = [ J J Z I d*x{s) I»| * 1J • 

In particular, for all r§:0 the space L*(S9 V) is a Hilbert space with 
inner product 

<*, y)L*r<8.v) = É f (d*x(s), dky(s)) * 1. 

Clearly for q^P and s ^ r we have i f ( 5 , F) C ^ ( 5 , V) and 
i f (5, F) (ZmS, TO, since 5 has finite volume. The following Sobolev 
imbedding theorems are basic [112] : 

Let l^py q< 00. T%ew 

(1) Lr(S, V) C L*(5, 7) for 0 g 5 g f and 1/q £ l /# - (f - *)/» à 0. 
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(2) Lr(S, V) C C*(5, V) for r > n/p + k. 

The inclusion sign indicates an algebraic subspace whose inclusion 
map is continuous. Furthermore, if s<r and l/(l>l/p — (r — s)/n, 
then both inclusion maps are compact. Il f : Si~-±S2 is a C°°-immersion, 
then ƒ induces a bounded linear map ƒ: Z^(S2, V)—»Z£(Si, V) [91, 
Chapter XI D ] . 

Let us take fe = 0 and r>n/p; then the topology on Lf(5, TO is 
larger than the uniform topology. Furthermore, the composition of 
an Lf-map with a C°°-map is an Lf-map. Thus once again we are in 
a position to apply our construction to obtain the theorem [29], [3S], 
[36], [89], [94]: 

Let M be a closed C^-submanifold of a Hubert space V, and let 
IZ(S, M) = {x<ELp

r(S, V):x(s)EM for almost all sES}. Then 
L*(S, M) is closed in Lv

r (5, V). If r>n/p, then L?(S, M) is a closed 
C™-submanifold of Lf(5, V). In particular, L%(S, M) is modeled on a 
Hubert space, and the imbedding of M in V induces a complete Rie-
mannian structure on L2

r(S, M). 

If g: M\-*M<L is a C°°-map, then g induces a C°°-map g\ Lf(5, ilfi) 
->L?(S, M2),if r>n/p. 

Again, many variations of this example are possible: (1) We may 
permit S to have a C°°-boundary, and take it into account in defining 
Lr(S, M). (2) In the definition of Lf(5, V) we can permit suitable 
weight factors (e.g., the Bessel potentials) for which the analogues of 
Sobolev's theorems are valid [51, Chapter 2 ] ; in particular, we can 
define Lf(5, TO for real numbers r ^ O . 

(E) The inclusion maps 0 ( 5 , M)->C°(S, M) ( O ^ r ^ o o ) and 
Lr(S, M)—>C°(S, M) (r>n/p) are homotopy equivalences. See [91, 
Chapter X I ] for an elegant proof based on the lemma of Palais-
Svarc. Thus the homotopy types of Cr(S, M) and L?(5, M) depend 
only on the underlying topological structures of 5, M. 

7. Transversality of maps. This section describes uses of differen-
tiable manifold structures in function spaces to establish generic 
properties of difïerentiable maps of differentiable manifolds. The 
results in (A) and (B) are due to Abraham [ l ] , [2], extending funda
mental work of R. Thorn and H. Whitney (based on the Brown-
Morse-Sard theorem). 

(A) Let X, Y be Cr-manifolds ( r ^ l ) modeled on Banach spaces. 
Consider a subset (MZCr(X, Y) which is a Cf-manifold such that 
the evaluation map ev: &XX—>F defined by ev(<£, x) —<t>(x) is (?. If 
K is a subset of X and B a closed O-submanifold of 7, let &K,B 
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= {<t> G ® : <i> | K is transversal to B}. The main theorem is the following : 

If K is compact, then (JLK,B is open in Œ. Let d i m X = w<oo, 
codim (F , B) =<?< °°, awd r > m a x ( w - 5 , 0). ƒƒ ^ evaluation map is 
transversal to B on K, then (&K,B is residual in Cfc (i.e., is a countable 
intersection of open dense subsets). 

Tha t result can be modified in many different ways; for instance, 
(1) in the second assertion, instead of a closed submanifold B in F 
we can take a Cr-map 0: B—»Fif both B and F have finite dimension. 
If r>max (dim X — dim F + d i m B, 0) and the evaluation map is 
transversal to 0 on K, then &K,e — { $ £ & : 4>\K is transversal to 0} 
is residual in Cfc. (2) The theorems can be formulated for Cr-sections 
of a fibre bundle, generalizing the present case of sections of the 
product bundle X X Y-+X. 

(B) The fact that Cr(X, F) is a C'-manifold ( r < 00) if X is com
pact—and in particular is a Baire space, so that every residual set is 
dense—permits wide applicability of the preceding theorem. Let 
£: V->X be a C-fibre bundle, and J*(£): J»(V)->X its bundle of Jfe-
jets of sections (0 ^fe ^ r ) ; the fibre of J*(£) over x £ X consists of the 
equivalence classes of sections </> defined in neighborhoods of x, 
identified when their differentials d{<j)(x) coincide (O^iSk). Its total 
space Jk(V) is a Cr~fc-manifold (and /*(£) is a vector bundle if £ is). 
The natural map j k : Cr(V)-*Cr-k(Jk(V)), which assigns to each Cr-
section (assuming that one exists!) </> its equivalence class at each 
point x £ X , is called the feth prolongation of <j>\ j k is an imbedding. 

Now for simplicity of exposition take F = I X F - ^ I , so that 
Jk(XXY) is identified with the bundle of fe-jets of maps X—>Y. 
Then the above result produces the following theorem of Thorn : 

Suppose that X and Y are finite dimensional O-manifolds and B a 
closed Cr~k-submanifold of F. For every F^Cr~k(By Jk(XXY)), the 
subset &Tf(X, Y) = {<££Cr(X, F ) : ƒ ($ ) is transversal to F] is residual 
in Cr(X, F) , provided r> max {dim X - d i m Jk(XX F ) + d i m B, 0 } . 
In this assertion it is not necessary that X be compact. 

Applications of Thorn's theorem include 
(1) Whitney's immersion theorems: 

If X and Y are Cr-manifolds (r^6) and dim F ^ 2 dim X, then the 
immersions are residual in Cr(X, F). If w^max(dim X, 2) and 
dim F > 2 dim X, then the imbeddings are residual in Cr(X, F). 

(2) If X is a Cr-manifold (r ^ 3) with 2 ̂  dim X < 00, then the non-
degenerate functions (§9B below) are residual in Cr(X, R). 



i966] A SETTING FOR GLOBAL ANALYSIS 783 

(C) Let X be a compact C°°-manifold and A a closed submanifold 
of X. Then the inclusion m a p / : A—>X induces a C°°-map ƒ: Cr(X, Y) 
—»CrG4, F) for any 0 ^ r < oo ; its differential ĵ .(<£) at every point is 
surjective and has kernel a direct summand of the tangent space to 
Cr(X, Y) at <£. As in §4B we conclude that ƒ is a split C°°-local fibra-
tion over its image; in particular, fCr(X, Y) is a C™-manifold, and for 
every <^G/Cr(X, F) the subset ]~~l(4>) is a closed C™-submanifold of 
Cr(X, F). The subsets Im'pf , F) and E m r ( I , F) consisting of the 
immersions and imbeddings in Cr(X, Y) are both submanifolds 
(1 ^r< oo); and the same properties of ƒ pertain to these. The fibre 
space structure of ƒ on Im r(X, F) and Em r(X, F) is basic in the im
mersion and imbedding theory of Hirsch-Smale and of J. Cerf. 

8. Critical point theory. 
(A) Let <j>: X—*R be a differentiable function defined on a differ-

entiable manifold X modeled on a Banach space E. A critical point 
of $ is a point x £ X a t which the differential <t>^(x) = 0 . A critical level 
of <f> is a number c£JR such that <j>~l{c) contains a critical point; from 
§4E we see that if c is not a critical level, then 4>~~l(c) is a closed 
differentiable submanifold of X of codimension 1. 

Suppose now that E is a separable Hubert space. Then X admits a 
differentiable Riemannian structure g as in §SC, relative to which 
the gradient field V<££C°°(r(X)) of cj> is characterized at each point 
x as the contravariant representative of the differential : 

0*(x) ' u ^ (W>(#), u)x for all u G X(x). 

Of course V<£ depends very much on g, bu t its zeros do not, being just 
the zeros of <j>*. 

We want next to decompose X according to the lines of steepest 
descent of <f>\ these are the trajectories of — V<£; i.e., the solutions of 
the differential equation 

dyt(x) 
(10) = — V<t>(yt(x)) with Y0(#) = x. 

dt 
Henceforth we will use the term trajectory to refer only to the positive 
half-solutions (yt(x))tzo- As in the finite dimensional case we have 
the following elementary property: 

Let X be a complete Riemannian manifold and 4>\ X—>-R(^a) a 
differentiable function bounded below by a. Then the solutions of (10) are 
defined for all t(E.R> cmd provide a full 1-parameter group of diffeo-
morphisms of X\ its fixed points are just the critical points of <£. 
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(B) Let X be a complete Riemannian manifold. We now establish 
conditions under which the function <j>: X—>R(^a) has sufficiently 
many critical points. In various forms—but always involving some 
sort of compactness—such conditions have been widely developed. 
(E.g., in the abstract variational theory of Morse [81 ], [82], the 
conditions of ^-accessibility of X and upper reducibility of <j> suffice, 
in the presence of lower semicontinuity of <£.) 

The following hypothesis has been verified in several different con
crete contexts [34], [35], [36]. I t is the mildest tractable condition 
we know for proving the existence of critical points: 

CONDITION (CT). There is a critical point of <f>: X-^R(^a) in the 
closure of every trajectory of — V<£. 

This condition is assured whenever every trajectory is relatively 
compact; e.g., whenever V<£ maps trajectories into relatively compact 
sets of T(X). 

Condition (CT) is satisfactory for basic existence theory, but is 
insufficient for a full-fledged Morse theory (see §9). The following 
much stronger hypothesis, formulated by Palais and Smale [94], 
[89], [HO] and applied successfully by them, is satisfactory for that 
(whenever $ is nondegenerate in the sense of §9B below). I t is moti
vated by the facts that on any trajectory (yt(x)) t à 0 we have <j> bounded 
and 

inf { | V*(7.<*)) |7|0O: t e R(m} = 0. 

Thus roughly speaking, Condition (CT) is Condition (C) along the 
trajectories of 4>. 

CONDITION (C). Let tf>: X—*R be a differentiable function. Whenever 
(xi)i*i is a sequence of points of X on which <j> is bounded and such 
that V(j>(xi)—^0 (equivalently, #„,(#*)*""">0), then there is a convergent 
subsequence. 

A first result is the following: 

If X is a complete Riemannian manifold and <j>: X-^R(^a) satisfies 
Condition (CT), then there is a critical point in each component of X. 
If <t> satisfies Condition (C), then there is a minimum point in each 
component. 

EXAMPLE. Suppose <£: X—>R is a proper function (i.e., the inverse 
image of any compact set of JR is compact in X). Then Condition (C) 
is satisfied; furthermore, dim(Z) < oo, since X is necessarily locally 
compact. 
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EXAMPLE. Take for X a Hubert space and for <f>: X-^R^O) a con
tinuous positive quadratic form. Then there is a unique bounded 
positive self-adjoint operator v(E:L(X) such that </>(x) = (v(x), x)/2 for 
all # £ X , so that v(x) is the gradient of <j> at x. The trajectories of <t> 
are given explicitly by yt(x) = exp( —vi)x. As t—>oo each trajectory 
converges to a point in the kernel of v, the space of critical points of 
<£. Thus Condition (CT) is satisfied; on the other hand, Condition (C) 
is not satisfied if the kernel of v is not zero. (That these critical points 
appear as limits of the trajectories, rather than merely limit points, 
is due to the quadratic character of <£.) 

(C) We now give lower bounds—described in purely topological 
terms—for the number of critical points of a differentiable function 
cf> : X—>R satisfying Condition (C) ; the general idea here is due to 
Lusternik-Schnirelman, and has been fit to the present situation by 
J. T. Schwartz [107]. For simplicity we will suppose that X is con
nected. 

If A is a closed subset of X, its category cat (̂ 4) relative to X is the 
least integer k for which there exist k closed (or open, since X is an 
absolute neighborhood retract) sets Ai, - • • , Ak of X whose union 
contains A and such that each inclusion map Aj—>X is null homo-
topic. If no such k exists, we define cat(^4) — oo ; then cat(A) ^dim(A) 
+ 1. If m is an integer such that 1 ^ w ^ c a t ( X ) , we define 

Cm{4>) = inf {sup(#(#) : x £ A) : cat(^4) ^ m\ ; 
Ac:X 

clearly Ci(<j>) ^c2{<t>) â • • * • For any real number c let Kc be the set 
of critical points of <t> in X a t the level c; Condition (C) implies that 
Kc is compact. Then we have the following theorems [107]: 

Let X be a connected complete Riemannian manifold, and <j>: X-^R 
a differentiable function satisfying Condition (C), not constant on any 
open subset of X. Suppose that m^.n and that — oo <cm(<t>) =c = cn(<l>) 
< + <*>. Then cat(i£c) ^n — m + 1, and dim^K^^n — m. Thus even if 
n = m, Kcis not empty. If 4> is bounded below, then <f> has at least cat(X) 
critical points. 

There is a well known lower bound for cat(X) : Define cuplong (X) 
as the greatest integer n such that for some coefficient field F and 
elements Zi^Hki(X; F) w i th fe t à l (1 ^i^n) we have the cup product 
z\ • • • zny^0. Then cat(X) ^ cuplong (X) + 1. 

These results have been extended by Palais [93] and F. Browder 
[16, in the case of manifolds modeled on uniformly convex Banach 
spaces] to complete Finsler manifolds, and to Cl-functions whose 
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differentials satisfy a local Lipschitz condition and which satisfy 
Condition (C) ; that is important, for instance, for applications (as in 
§10) to variational theory of a nonquadratic character. The idea is to 
introduce certain Lipschitz vector fields on X with full trajectories, 
which play sufficiently well the role of the gradient field of </>. 

EXAMPLE. As in §3B, let BO(p) be the homogeneous space of p-
planes through the origin of a separable infinite dimensional real 
Hubert space E\ then cuplong (BO(p)) = oo. In particular, the unit 
sphere S of E is the universal cover of BO(l) ; and any differentiable 
function $ : S—^R(^a) bounded below and even ((/>(— x) —</>(x) for all 
x £ S ) which satisfies Condition (C) has infinitely many critical points 
on S. Applications of that property to show that certain eigenfunc-
tion problems have infinitely many solutions have been given (1) by 
Sobolev [60, Chapter VI, §4] for Hammerstein integral equations, 
and (2) by F. Browder [16] for elliptic boundary value problems. 
See also Anosov [3] for the case of a function on S which is invariant 
under certain finite cyclic groups of transformations on S. 

(D) Suppose now that X is a closed differentiable submanifold 
of a complete Riemannian manifold F, and that c/>: Y—>R is a differ
entiable function. Then for any xÇ^XQ Y we can form the gradient 
Vy0(x) G Y{x) relative to the Riemannian structure of F, and the 
gradient Vx<t>ipo) G I ( x ) relative to the induced structure on X. Let 
Px: Y(x)—*X(x) be orthogonal projection, and v(x) = (/—Px)VY<l>(x). 
Lagrange's method of multipliers is contained in the following asser
tion : 

Vx<K#) =Px^Y(t>(x) ; in particular, the point xE:X is a critical point 
of 0 : X—>R if and only if Vy<l>(x) is orthogonal to X{x) in Y(x). Let 
(jt)t^o be a trajectory of <j>\ X—>R, and I \ = i(y*) its image under the 
imbedding map i : X—* F. Then 

dyt dVt 

= — Vx<t>(yt) when and only when h Vr<Kr«) = Kr<). 
dt dt 

The next typical criterion for establishing Conditions (CT) and 
(C) has been used in several different contexts, starting with the 
special case of Weyl's method of orthogonal projection [34-36; see 
also §§9, 10 below]: 

Let X be a closed submanifold of the Hilbert space Et and <£: E-+R 
a differentiable function. Suppose that 

(1) the gradient V<£ = V ^ has the form V<£(x) = A (x) +K(x) for some 
compact map K: X—+E and linear Fredholm map A on E\ 

(2) if we decompose V<£(#) into its tangential and normal components 
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V0(x) = Vx<K#) + v(x) for aM x G X, 

then v: X—>E is compact on trajectories (resp., is a compact map); 
(3) every subset of X on which $ and \ Vx<I>\ are bounded is bounded 

in E. Then <£: X—+R satisfies Condition (CT) (resp., Condition (C)). 

9. Nondegenerate critical point theory. 
(A) The fundamental viewpoint of Morse theory [81 ], [82] of a 

real-valued function cj>: X-^R on a topological space is that the order 
of the real number field induces a nitration (</>c)ceR of X by the sets 
4>c = {% ÇzX : <£(#) ^ c}. Then the relative homology groups H(<j>b, </>a ; F) 
with coefficients in a field F-can be used to define critical levels of <f>\ 
and with mild restrictions on <f> the filtration determines a homology 
spectral sequence which produces a form of the Morse inequalities 
(11) relating the number and types of critical levels to the homology 
of X. 

In the special case that </> is a differentiate nondegenerate function 
on a compact manifold X, that theory admits a sequence of refine
ments, starting with Morse l inequalities as given below and cul
minating with Smale's handlebody theory. In the case that X is an 
infinite dimensional manifold there are several special cases where 
Morse theory has been adapted and applied to concrete situations. 
(E.g., §10D below, and Klingmann [59] for the study of a class of 
(possibly degenerate) differentiable functions on a Riemannian mani
fold which satisfy Condition (C) and for which a weak form of the 
Morse inequalities (11) is satisfied.) However, the most precise and 
satisfactory form of the theory at present (in both assertion and proof 
strictly analogous to that of the compact case) is that presented in 
(C) and (D) below. 

(B) We say that a critical point x^X of </> is nondegenerate if 
d2<j>(xo) (sometimes called the Hessian) is a nondegenerate bilinear 
form on X(x0) ; say that 4> is nondegenerate if all its critical points 
are. The inverse function theorem implies that each nondegenerate 
critical point is isolated. The Morse index (resp., co-index) of x0 [or 
of d2<fi(xo) ] is the supremum of the dimensions of the linear subspaces 
of X(xo) on which d2cj>(xo) is negative definite [resp., the index of 
— d2cf>(xo)]. 

Suppose that #o is a nondegenerate critical point of $ and that 
<K#o)=0. An application of the spectral theorem to d24>(xo) and 
Taylors theorem shows that there is an Xo-centered chart (6, U) in 
which 4> (d~1(x)) = \Px\2- | (I-P)x\2 for all x&(U), where P is a 
continuous orthogonal projection in E. Thus the index (resp., co-index) 
of Xo is the dimension of the range of J—P (resp., the dimension of the 
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range of P ) . This was established in the case dim E < <*> by M. Morse; 
his proof was modified by Rothe [99] in a special infinite dimensional 
case, and by Palais [89] to fit the present situation. 

I t is most important to be able to compute the index of a nonde-
generate critical point. A good tool is provided by the Morse focal 
point theorem, which has been abstracted by Hestenes [48] : A resolu
tion of the identity for a Hilbert space E is a 1-parameter family 
(Ex)x0gx<Xi of closed linear subspaces such that (1) EXo = 0, £Xl = E : 
( 2 ) i f \ i M , then E X CE"; (3) if X O ^ M < X I , then E^ = n { ^ x : M<XgXi}; 
(4) E^ = E ^ ° = Closure of U {Ex: X 0 ^ X < M } for every X 0 < M ^ X I . Say 
that a quadratic form a £ S X 2 ( £ , R) is a Legendre form if it is expres
sible as the difference a = j8—y of two quadratic forms, where $ is 
positive definite and 7 is weakly continuous. Given a Legendre form 
a: E—>JR, for each Xo^X<Xi we choose a maximal linear subspace 
CXCEX such that (1) no x^O in Cx is a-orthogonal to any E" with 
M>X; (2) if x G C \ then a(x, y)=0 for all yEE^. Set CXl = 0. Then 
c(X)=dim C x<oo, and only finitely many C(X)T^0. If we let i(\) 
— index (a) on Ex, then the focal point theorem can be stated as 
follows : 

Let a: E-^R be a Legendre form, and (£x)x0gx<;Xi a resolution of the 
identity for E. Then for every X0gX^Xj we have c(X)=i(X+0) 
— i(\ — 0). Furthermore, 

index (a) = ]T) c(\). 
X0<X<Xi 

(C) Let M be a differentiable manifold modeled on a Hilbert space 
and TV a closed submanifold; both M and N may have boundaries. 
We say that M arises from N by differentiably attaching a handle of 
type (j , k) if (1) there is a homeomorphism h of D]'XDk (the product 
of j - and fe-dimensional closed discs (0 ^ j , k ^ 00)) onto a closed subset 
of M, and M = NKJh(D>'XDk); (2) h\S^~lXDk is a diffeomorphism 
onto dNr\h{DjXDk)\ (3) ft| Int(i>0Xl>* is a diffeomorphism onto 
M — N. The main theorem of differentiable Morse theory is the fol
lowing [94], [89], [HO]: 

Let X be a complete Riemannian manifold and <j>\ X—>R a differ
entiable nondegenerate function satisfying Condition (C). Then 

(1) the critical levels of <}> are isolated, and there are only a finite 
number of critical points of <j> on any level ; 

(2) if there are no critical levels of<t> in [a, b]> then <£« is diffeomorphic 
to <fii> ; 

(3) if a<c<b and c is the only critical level of <j> in [a, b] and 
xi, • • • , xr are the critical points of </> at level c, then <f>b is diffeomorphic 
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to 4>a with r handles of type (ji> &i) > • • # > Un W disjointly and differ-
entiably attached, where ji and ki are the index and co-index of Xi 

We remark that in virtue of Dugundji's theorem [25] the sphere 
in infinite dimensional Hubert space is a strong deformation retract 
of the disc, whence the homotopy type of & in the third statement 
above is not altered by neglecting to attach any handle of infinite 
index. 

An algebraic consequence of that structure theorem is contained 
in the Morse inequalities (whose proof can also be given on the basis 
of much less precise structure) : 

(4) If a<b are not critical values of </>, y>i(a, b) the number of critical 
points of $ of index i in <jrl\a, &]> a>nd &(<£&, (j>a; F) =dim Hifa, <t>a\ F) 
for some coefficient field F, then for every integer k^O we have 

£ (-D*-tt<(*», ^ i P ) â Ê (-l)*-'/ii(a, *)• 

Equality holds for k large. 
(5) If </> is bounded below, then f or every i we have fii(X; F) ^/xt(<£), 

the number of critical points of <fi on X of index i. Of course, these num
bers may be infinite. If each /**(<£) < °° (0 ^i^k), then 

(11) £ (-1)*-%(X;F) g £ < - l ) w w ( * ) . 

A major qualitative aspect of these inequalities is that the left mem
bers involve only the homology structure of X, whereas the right 
members depend on the local analytic structure of <j> (that latter be
ing determined (as in Section 9B) in the neighborhood of a nonde
generate critical point). 

EXAMPLE [75], Let X be a complete Riemannian manifold and 
<j>: X—>R a nondegenerate function satisfying Condition (C). If <j> 
is bounded below and has precisely one critical point, then X is 
diffeomorphic to a Hubert space. If <̂> is bounded and has just two 
critical points, then X is homeomorphic to a sphere. 

(D) There is a generalization [75], [76], [l20] of nondegenerate 
Morse theory (made first in the compact case by R. Bott) which is 
important for applications in infinite dimensions: Again, let<£: X-+R 
be a differentiate function on a complete Riemannian manifold. A 
connected closed submanifold N of X is a nondegenerate critical 
manifold of <f> if every xÇEN is a critical point of <£ whose tangent 
space N(x) (ZX(x) coincides with the null space of the Hessian of <f> 
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at x\ in particular, the restriction of the Hessian to the orthogonal 
complement NL(x) of N(x) is nondegenerate. The index of N is the 
constant value of the index of the Hessian on N. We define "differ-
entiably attaching handlebundles" as we did "differentiably attaching 
handles" above, using disc bundles in place of products of discs. 

Let X be a complete Riemannian manifold and <£>: X-^R a differ-
entiable function satisfying Condition (C), whose critical set is a union 
of nondegenerate critical manifolds without interior. Then 

(1) for any a<b the critical set in cj)~1[af b] is the union of a finite 
number of disjoint compact critical submanifolds of <£ ; 

(2) if there are no critical values of $ in [a, b], then <j>a is diffeo-
morphic to <f>h\ 

(3) if a<c<b and c is the only critical value of <j> in [a, b] and 
(Nj)iSjzr are the critical manifolds ofcj> at level c, then <j>b is diffeomorphic 
to (j>a with r handlebundles disjointly and differentiably attached. 

(4) If a<b are not critical values of <j> and ( iV})i^ r are the critical 
manifolds of finite indices (kj)iû3^r whose levels are in [a, b], then f or 
every integer k ^ 0 we have 

Equality holds for k large. 

The choice of Z2 as coefficient field is dictated here by the unknown 
homological position of the Nj in X. 

10. Applications to variational theory. 
(A) We offer first some illustrations of the use of differentiability 

in classical existence theory in the calculus of variations, following— 
in oversimplified form—the viewpoint developed by L. Tonelli and 
C. B. Morrey (see [79, Chapter I, I I ] and the references therein for 
the appropriate generalizations). 

Let <j>: U—>R be a C2-function on a convex open subset U of a 
Hilbert space E. First of all, if <j> has a relative minimum at #o£ U, 
then clearly <£*(x0) = 0 . Secondly, it is an easy consequence of Taylor's 
theorem that if d2<f>(x; v, v) ^Ofor all x£ £7 and vÇzE, then <f> is weakly 
lower semicontinuous in U; i.e., given any net (xa) and x0G.U such 
that the inner products (xa, y)—>{x0, y) for all yÇzE, then <f>(x0) 
^ l im inf <£(#«)• I t follows that such a <j> assumes its absolute minimum 
on any weakly compact subset of U\ but these are precisely the subsets 
which are weakly closed and bounded in norm [26, Chapter V] . 

EXAMPLE. If a0l • • • , an are nonnegative real numbers, then the 
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function x—><£(#) = ]CLo#fc|#|fc *s weakly lower semicontinuous on 
E\ and <j> assumes its minimum on any convex closed (in the norm 
topology of E) bounded subset of E. 

EXAMPLE. Let a: E-+R be a Legendre form; that is equivalent to 
saying that a is a quadratic form on the Hubert space E, expressible 
in the form a(x) = | Ax\ 2/2 for some left Fredholm operator A [49]. 
Every Legendre form is weakly lower semicontinuous. This example 
abstracts the Dirichlet principle for elliptic operators, as we see from 
the following application to differential geometry [33]: 

Let M be a compact oriented differ entiable manifold without boundary 
(for simplicity of exposition). Let £, rj be finite dimensional differ enti
able vector bundles over M, and A an elliptic linear operator from the 
space of differ entiable sections of £ to that of rj. Given a differ entiable 
section yp of rj, there is a differ entiable section <t> of £ such that A<f>—yp if 
and only if \p is L2-orthogonal to the kernel of the adjoint A* of A. 
Furthermore, the kernels of both A and A * are finite dimensional. 

To place this problem in the setting of Legendre forms, we proceed 
as follows: We introduce Riemannian structures on M, £, and 77, 
relative to which we can construct the Hubert spaces L2

r (£) of sections 
of £, as in §6D. If A has order r, then A : L?(g)—>Ll(rj) is a left Fred-
holm operator (this amounts essentially to Garding's inequality for 
the strongly elliptic operator A*A [33]). Therefore, the Dirichlet inte
gral a((j>) — \A(f)\2

0/2 is weakly lower semicontinuous on !,;?(£). Tha t 
was the viewpoint adopted in the proof of Hodge's theorem given in 
[80]; see also [33] for a simplified proof in the general case. 

(B) The following general viewpoint of the calculus of variations 
in its differentiable context is that of [35], [36] and [94]. 

Let M be a compact oriented Riemannian manifold, and 7 : V—>M 
a differentiable fibre bundle. A variational density on y of order r is a 
function ƒ: Jr(V)—>R on the bundle of r-jets of sections of 7. We 
define the function F: C^iV^-^R through the diagram 

C°°(F) ?—*R 

ijr Î 

C«(J'(V)) -!->C»(MXR). 

Here the right hand arrow denotes integration over M of a real-
valued function: 

P(4>) = f f(jr4>) * 1. 
J M 
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We say that ƒ is (quadratically) Coextensive if F admits an extension 
to a CMunction !%(¥)—>R. In the case that 7 is a vector bundle 
Smale [llO] has given conditions to insure that ƒ be Coextensive, 
and that the second differential of the extended map have satisfac
tory properties. Of course, if ƒ is a quadratic form on a vector bundle 
£, then its restriction to any closed differentiable subbundle 7 is Co
extensive. 

The next theorem summarizes several recent contributions [35], 
[36], [94]. We state it for the case that the base manifold M has no 
boundary; the modification of our formulation and methods to include 
boundary value problems, while presenting analytic and geometric 
features of interest, does not present severe difficulties. 

Let 7 : V—+M be a differentiable fibre bundle over a compact oriented 
Riemannian manifold. Suppose that f is a C2 -extensive, positive ( / àO) , 
variational density on 7 of order r >dim(Af)/2. Thus f determines a C2-
function F: Ly(V)-^ i?(^0) ; and if F satisfies Condition (CT), then 
F has a critical point in every component of I?T(V). If F is nondegener-
ate and satisfies Condition (C), then we have a full Morse theory for F. 

This result—and certain variations on it—provide existence theory 
in L*(V) ; taken together with certain examples [34], [35], it suggests 
that in general it is easier to solve high order variational problems 
than low order ones. Of course, there remains the local matter of 
showing that such L2

r(V)-solutions have sufficiently good differ
entiability properties; see [79]. 

(C) EXAMPLE. Let N be a compact Riemannian submanifold of 
the Euclidean space Rq; we choose an imbedding here solely for sim
plicity of exposition. We treat MXN as a trivial subbundle of the 
Riemannian vector bundle MXRq, and view its sections as maps 
from M to N. For any <j>£iZ%(MXRq) we define its rth energy 

EM = 4 f l(<* + <2*)r*l2*l, 
Z J M 

where d* denotes the adjoint of the exterior differentiation operator 
d, using the Riemannian structure of M. The restriction of Er to the 
closed submanifold L?(MXN) is differentiable if r>dim(ikf)/2, and 
its extremals are called polyharmonic (or r-harmonic) maps of degree 
r from M to N. They are known to be differentiable. 

If M and N are compact Riemannian manifolds, and M is oriented, 
then every continuous map <f>: M-+N is homotopic to an r-harmonic 



i966] A SETTING FOR GLOBAL ANALYSIS 793 

map, provided r>à\m(M)/2. If r~l, or if N has Riemannian sec
tional curvature Riem (N) ^ 0 , then the same conclusion holds. 

This was proved a few years ago [34], [35], based on a form of the 
projection theorem of §8D; a problem similar to the first assertion 
but involving boundary values was solved (with a similar projection 
method) by Palais [89]; his approach can be applied to produce that 
assertion with no essential difficulty. 

Added in proof. A treatment has been given by J. S. Saber, Mani
folds of mapsf Ph.D. Thesis, Brandeis Univ., December, 1965. 

EXAMPLE. If dim M=lt then M is diffeomorphic to the circle SK 
In this case L?(S\ Rq) is a Hubert space with inner product 

<*,*>!>.*«>= r <*w, *(*)>&+ r (<t>f(s)y^(s))ds. 
J sl J s1 

The 1-harmonic maps </>: Sl-~*N are just the closed geodesies of N 
(parametrized proportionally to arc length). A treatment of geodesies 
and closed geodesies—in particular their Morse theory—from the 
present viewpoint has been given in [35], [58], [75], [89]. The exis
tence of a non trivial closed geodesic on N (first proved by A. I. Fet) 
is an immediate consequence of the fact that E\ satisfies Condition 
(C); furthermore, strong methods [58], [75] are available for estab
lishing the existence of more closed geodesies (extending Morse's 
work on estimates of the number of closed geodesies on manifolds 
diffeomorphic to the w-sphere). 

If N is not compact, then Condition (C) is never satisfied; how
ever, if N is complete and its Riemannian structure possesses certain 
growth conditions at infinity, then Condition (CT) is satisfied [34]-
[36], [75]. 

(D) Applications of Morse theory have been made by E. H. 
Rothe, in the case of certain nondegenerate functions <j> defined on 
convex bounded open subsets U of a Hubert space E. (See [99], 
[100], and [lOl] for a survey. Also [102] for the theory under rather 
general boundary conditions.) He supposes that the gradient of <j> is 
expressible in the form x—>Vcj>(x)=x+K(x) for some compact map 
K: U—>E; then in the projection theorem of §8D conditions (1) and 
(2) are verified, whence some form of (3) insures that Condition (C) 
is satisfied. See also §11B below. 

11. Fixed point theory. Certainly among the most widely used 
algebraic topological tools in analysis are the theories of fixed points 
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and topological degrees. We cannot begin to do justice to them in 
this report; we will treat their theoretical aspects, and refer to [21 ], 
[60], [69], [70], [72] for applications to the existence, uniqueness, 
stability of solutions of ordinary and partial differential equations, 
and of integral equations. 

(A) A first basic result is the Schauder-Tychonoff fixed point theo
rem [26, Chapter V ] : 

If A is a convex compact subset of a locally convex topological vector 
space E and <£: A—*A a continuous map, then there is a point aÇzA for 
which <£>(a) = a. 

The main techniques of the proof involve the approximation of <3> 
by a map into a finite dimensional subspace of E, the application of 
fixed point theory in finite dimensions, and homotopy invariance 
properties. As a consequence we cite the following : If A is a bounded, 
convex, closed subset of a reflexive Banach space E {whence A is weakly 
compact) and <£: A—>A is weakly continuous, then <£ has a fixed point. 

If E is metrizable and A a convex subset of E, then A is compact if 
and only if A has the fixed point property [57]. 

Important for other applications are the following properties: 
(1) The closed convex envelope of a compact set (i.e., the inter

section of all closed convex supersets of ^4) in a complete locally con
vex topological vector space E is compact [13]. 

(2) If A is a closed subset of a metrizable space X and 3>: A—>E is 
a continuous map with relatively compact image, then there is a 
continuous extension of $ to a map of X into E whose range lies in 
the closed convex envelope of <3>(̂ 4) [25]. 

In case £ is a Banach space the Schauder-Tychonoff theorem can 
be modified as follows [41 ], [98]: 

If $ : D—+E is a compact map of a closed disc D of E having ^{dD) C.D, 
then <£ has a fixed point. 

There are many variants of the Schauder-Tychonoff theorem (e.g., 
relaxing the condition of local convexity of E (V. Klee), permitting 
set-valued mappings (S. Kakutani)), of which we cite the following 
two: 

(1) Let $ : E—>E be a compact map of the Banach space E, and Xi a 
real number ( O ^ X i ^ l ) . Then either there is a point a £ £ with Xi$(a) 
= a, or {x£:E:\${x) —x for some X(0<X<Xi)} is unbounded [21, 
Chapter I I I ] . 

(2) If <£ : E—>E is a compact map such that for some positive integer 
m the iterate * m (E) is bounded, then <ï> has a fixed point [15], [71 ]. 
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EXAMPLE. Some compactness assumption is essential in these as
sertions. If D denotes the closed unit disc in a normed linear space 
E, then there are fixed point free maps $ : D—>D if and only if dim E 
= oo [25]. If E is a separable infinite dimensional Hubert space, then 
Kakutani (see [So], [57] for generalizations) has exhibited a fixed 
point free homeomorphism of D onto itself; in this order of ideas 
Klee [56] has shown that the sphere dD is homeomorphic to any 
closed convex body (i.e., subset with an interior point) in E. Every 
infinite dimensional compact convex subset of a normed linear space 
is homeomorphic to the Hubert parallelotope [57]. 

(B) We next obtain a count for the algebraic number of fixed 
points of certain maps; tha t is achieved through the Leray-Schauder 
degree (developed in [72] for Banach spaces, and extended in [70], 
[86] to locally convex spaces). 

Let U be an open subset of the locally convex topological vector 
space E. Suppose that <j>: U—>E is a continuous map expressible in 
the form x—»<£(x) = x — 4>(x) for all #££/", where Q(U) is relatively 
compact. (It might be helpful to think of 0 as a vector field on £/.) 
Then for any point & £ E — <£(bdy U) the Leray-Schauder degree 
d[<f>, U, b] of <t> in U relative to b is an integer defined [70], [86], 
through a finite dimensional approximation of <£>(£/), roughly speak
ing as the algebraic number of times that b is covered by <£-images of 
points of U. I t has the following properties: 

(1) Ifd[<j>, U,b]?±0,thenb<Ecl>(U). _ _ _ 
(2) If 27i, U2 are disjoint open subsets of U such that U = U1UU2 

and & £ E — <j>(bdy £/iVJbdy Z72), then 

d[*, Ux KJ U2, b] = d[4>, J7i, b] + d[<f>, U2, b]. 

(3) The integer d\<f>> U, b] is invariant under continuous deforma
tions of <j>, C7, 6, if <f>t maintains its form x-*x—$t(x) with the deforma
tion &t(U) contained in a compact set f or O ^ / ^ l , and b never lies in 
<Kbdy(t/)). _ 

(4) If Uo is an open subset of U containing <jrl(b), then 

d[<t>, Uo, b] = d[<j>, U, b]. 

(5) Let V be an open subset of E containing 4>{U), and (Vi) the 
components of V—</>(bdy U). If \[/: V—>E is a continuous map of the 
form x—>\l/(x)=x—ty(x) with ^(V) relatively compact, and & £ E 
- ^ o ^ ( b d y U)-\p(bdy V), bi&Bi9 then 

dtyo4>, Uyb] = yZ d[4>, U, bi]dty, Vi, b]. 
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The Schauder-Tychonoff theorem is an easy consequence of these 
properties. One can prove the following restricted version of Brou
wer' s theorem on invaria nee of domain [70], [lOó], [86]: 

If E is a Frêchet space and cj>: ~U—>E is a one-one map of the form 
above, then <i>(U) is open in E, and for any &£<£([/) we have d[</>, [/, b] 
— ± 1. Schauder [105] has used such invariance of domain in Banach 
spaces in studying solutions (in particular, in establishing existence 
from uniqueness assumptions) of second order elliptic quasi-linear 
equations with Dirichlet data. Invariance of domain also implies the 
Fredholm alternative for linear operators </> such that x—>x~<t>(x) is 
compact [69], [70 ]. 

(C) Let U be a bounded open subset of a Banach space E, and 
aÇzU an isolated fixed point of $ and Ua a neighborhood of a in U 
containing no other fixed point of <ï>. Letting <p = /—<&, then d [<£, Uay 0] 
is independent of the choice of Ua> and is henceforth denoted by 
d[cj>, a ] , the index of a. If 0_1(Ö) consists of isolated points ai, • • • , aa 

G U, then d[<£, £7, 0] = ^ j a l d[</>, a,-] is called the algebraic number of 
zeros of 4> in U. In particular, suppose that $>: 77—>E is Frêchet differ
entiate at a fixed point a £ Z7. If + 1 is not an eigenvalue of the differ
ential <£*(#), then a is an isolated zero of <j> with index 

d[<l>,a] = (~1)«, 

where a is the sum of the orders of the eigenvalues of the compact linear 
operator <£*(#) in the open interval (0, 1) [60], [72]. 

If <j> is the gradient field V^ of a nondegenerate function \p: U—>R 
defined on a bounded open convex subset of a separable Hubert space, 
and a is a critical point of x//, then a is the Morse index of yp a t a. 
Again letting iii(ip) denote the ith Morse number of critical points in 
U of \f/t we obtain the formula of Rothe [99] : 

d[v^ u o] = £ ( - i ) M * ) . 

In particular, | d[V^, U, 0] | is a lower bound for the number of criti
cal points of \J/ in U. See [lOO] for an extension to the case that \j/ is 
degenerate. This formula has been used by Rothe [99], [60] to estab
lish existence and qualitative properties of certain systems of non
linear integral equations, including the Hammerstein equation. 

(D) The following result is a generalization and application of the 
Lefschetz fixed point theorem for absolute neighborhood retracts. 
We write H(X ; Q) for the direct sum of the singular homology groups 
Hi(X; Q) of X with rational coefficients; and for a map $ : X—>X let 
<ï>* denote the direct sum of the induced endomorphisms <£*: H{{X\ Q) 
-+Hi(X; Q). 
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Let X be a O-manifold modeled on a Frêchet space, and <3>: X—+X a 
continuous map with relatively compact image. Then the image $*H(X\ Q) 
of the rational homology group is finite dimensional, so that the Lef
schetz number 

A($) = S ( - 1 ) ' Trace (#<) 

of $ is defined. If A(<ï>) 5^0, 2/̂ w <£ fes a fixed point. 
Suppose that X is acyclic over Q (i.e., Hi(X\ Q) = 0 for all i>0, and 

HQ{X\ Q) = Q). rfeew $ tes a ,/îxed point. 

The idea here is that X is imbeddable as a closed subset of a 
Banach space F as a retract of a neighborhood U in F. Then we can 
construct a compact absolute neighborhood retract P such that $(X) 
CPCU, and a map ^ : P - > P with A(¥) =A($) and such that any 
fixed point of ^f in X is a fixed point of $ ; but we can apply Lefschetz's 
theorem to SF. (A special case of this theorem (X is a C3-manifold 
modeled on a C3-smooth separable Banach space) has been found 
independently by F. Browder [17], and then generalized by him to 
iterated maps; see also [7l].) As a simple illustration, let X be an 
infinite dimensional projective space (real, complex, or quaternionic) ; 
then any continuous m a p / : X—>X with relatively compact image has 
a fixed point. 

If in the above theorem <E> has only isolated fixed points ai, • • • , a8 

£ X , then with each we can attach the index d[<ï>, a,-], and 

A(*) = E 4* */]• 
y-i 

See [71 ] for the relations between local degrees and the Lefschetz 
number. In the special case that X is a Riemannian manifold, each 
d[&, aj] can be computed analytically. 

(E) Smale [ i l l ] has suggested the following notion (generalizing 
a concept developed extensively by L. Pontrj agin in the finite dimen
sional case) of degree for certain maps of differentiable manifolds. 
Let X and F be connected separable Cr-manifolds modeled on Banach 
spaces (which we will suppose infinite dimensional), and ƒ: X—*Y a 
proper Fredholm Cr-map of index ( / ) = ^ â 0 and r>p-\-l. Then for 
all points &£ Y except for a meager subset of Y the set f~lQ>) is a 
closed Cr-submanifold of X of dimension p, as in §4E. Tha t deter
mines a definite element y (J) of the unoriented bordism group $lp(X) 
of X, which is independent of the choice of b. (For definition and 
calculation of Sflp(X) see [19, §§4, 8].) y (J) is called the degree mod 2 
of f. Tha t concept has many properties of degree; e.g., (1) if/0, f%: 
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X—>Y are Fredholm nomotopic, then y(fo)=y(fi)] (2) if 7(/)?*0, 
then ƒ is surjective. If index (ƒ) = 0 , then y (J) can be interpreted as an 
integer modulo 2 ; and in case X is an open subset of a Banach space 
E= Y, then y(J)=d\f, U, b] mod 2. 

12. Homological duality. In this section we describe certain as
pects of manifolds centering around Poincaré and Alexander-Pon-
trjagin duality. We begin with a theorem (closely related to the Gysin-
Thom isomorphism theorem) on the cohomology of a closed finite co-
dimensional submanifold, which is a combination of these two dual
ities. 

(A) Let X be a C°-manifold modeled on a locally convex topological 
vector space £ , and A a closed submanifold of codimension p^l. 
If to each open subset U of X we assign the relative singular co
homology group H*(U, U—A) with integer coefficients, and to each 
open V CU the natural homomorphism H* ([/ , U-A)-*H*(V, V-A), 
then that assignment determines a sheaf 3—*A (the orientation sheaf of 
the pair (X, A)) locally isomorphic to the integers. We will let 
H*(A; 3) denote the singular cohomology of A with local coeffi
cients 3. 

The following theorem is the principal result [30], [32], [87]; a 
generalization can be given, taking into account supports, general 
coefficient sheaves, and multiplicative structure. 

Let X be a C°-manifold modeled on a locally convex topological vector 
space f and A a closed p-codimensional submanifold ( £ ^ 1 ) . There is a 
canonical isomophismfor all iÇzZ 

4>: E\A ; 3) -> H**(X, X - A). 

Both cohomology groups are based on singular cöchains; the right 
member uses relative cohomology with integer coefficients. The proof 
has two aspects: (1) If X is any paracompact space and A any closed 
subset, then the graded sheaf 3—>A can be defined, and there is a 
spectral sequence with E2 = H*(A, 3), Cech cohomology with coeffi
cients in the sheaf 3, converging to iJ*(X, X—A); (2) a local study 
(admitting interesting generalizations [87]) of a neighborhood of A 
to produce triviality of the spectral sequence. 

We say that the pair (X, A) is oriented if the sheaf 3—>A is simple, 
and if a definite isomorphism 3 « Z has been chosen. The class $(1) 
= aE:Hp(X1 X—A) is called the fundamental class of (X, A), and we 
can express the isomorphism <j> in the form <t>(x) =x-a (cup product). 
Thus we have the interpretation of i7*(X, X—A) as a free H*(A)-
module of rank 1, generated by the fundamental class a. Furthermore, 
we have an exact sequence 
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(12) > H*~l(X - A) ^ H*-*(A) -!> H*(X) 4 H*(X - A) -> • • • 

where £: X —yl—»X is the inclusion map, rj corresponds to the Gysin 
homomorphism (of the normal bundle of A in X, when that makes 
sense), and X is the cohomology analogue of Alexander linking be
tween cycles of A and cycles of X — A. 

If (X, A) is an oriented pair we can define (following the procedure 
of Thorn) its Euler class WP(X, i4 )=0- 1 [0( l ) -0( l ) ]Gf l r p ( i4) . (In 
the differentiable case this is just the Euler class of the transverse 
bundle of A in X.) More generally, for any ^-codimensional sub-
manifold A in X we can define the total Stief el-Whitney class w(X, A) 
= </r~1 Sq <£(1) using Z2-coefficients, where Sq denotes the Steenrod 
square in cohomology over Z2. 

EXAMPLE. If the inclusion a: A—+X imbeds A as a deformation re
tract of X, then the homomorphism rj of the above exact sequence is 
given by multiplication: rj(x) = (pc*)~1[x'Wp(X9 A)]. If X is such a 
neighborhood of A in a manifold F, then WP(X, A) is an invariant of 
the imbedding A—>F. 

(B) The Brouwer-Jordan separation theorem is intimately con
nected with Alexander-Pontrjagin duality on manifolds: 

Let X be a C°-manifold modeled on a locally convex topological vector 
space, and A a closed submanifold of codimension 1. If Hl(X) = 0 and 
/30(X) = dim Ho(X) is the number of components of X, then 

£o(X - A) = £o(X) + 0o(A). 

Similarly, (1) if p^2 and X is connected, then so is X—A; (2) if X 
is acyclic, then we have the isomorphism X: H{(X—A)—>Hl~p+l(A) 
for all i ^ l . These properties follow from the exact sequence (12)— 
in particular, from the segment (using Z2-coefiicients throughout if 
(X, A) is not oriented) 

0 -> H°(X) -> H°(X - A) -^ Hl-v(A) -> 0. 

In another direction we have the following separation property 
[39], [70], closely related to the invariance of domain of §11B: 

Let E be a Banach space, A a closed bounded subset, and cj>: A—+E a 
homeomorphism of A onto a closed subset <j>(A). If the map x—>x— </>(x) 
is compact, then E—A and E—<j)(A) have the same number of com-
ponents. 

On the other hand, it has been established by Klee [56; this refer
ence contains several generalizations to Banach spaces of such theo
rems] that if A is compact and E is an infinite dimensional Hubert 
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space, then E—A is homeomorphic to E. Bessaga [8] has shown that 
E — O is C^-diffeomorphic to E ; furthermore, the diffeomorphism can 
be put in such a form that it produces a C°°-diffeomorphism of E 
onto its unit sphere S. 

(C) Closely related to Alexander-Pontrjagin duality in a Banach 
space is the following treatment of cohomotopy theory, due to K. 
Geba [39]. Fix an infinite dimensional Banach space E, and choose 
a decreasing sequence of closed linear subspaces £ = JE°O-E 0 0 ~ 1 

DE°°-2D • • • such that codim (E00, E°°-;b)=fe for all Jfe^O; let 
p^-Jo==j^co-k_Qt p o r a n y dosed bounded subset X of E we consider 
the continuous maps cj>: X—»P°°-fc of the form <j>(x) =x— <£(x), where 
<I>:X—>E is compact. Say that two such maps <£, \p: X-+P™~k are 
specially homotopic if there is a homotopy h between them of the form 
ht(x)=x — Ht(x)1 where H: XXI-+E is compact. These special 
homotopy classes form an abelian group 7r°°"-"*(X), called the feth 
cohomotopy group of X, with addition patterned after K. Borsuk's 
cohomotopy addition. (Similarly, if C is a closed subset of a finite 
dimensional subspace of E and [X, E — C]s denotes the totality of 
special homotopy classes of maps </>:X-+E-C, then [X, E - C ] s has 
a natural abelian group structure [7, 39a].) Tha t definition can be 
relativized to produce an abelian group 7r°°~~fc(X, A) for pairs (X, ^4), 
where A is a closed subset of X', if/: (X, A)—>(F, B) is a map of pairs 
of the form ƒ(x) =x — F(x), where F is compact, then ƒ induces a 
homomorphism /°°-*: T T 0 0 - * ^ , 5)-^r°°-*(X, A) for all fe^O. Geba 
[38], [39] has shown that (71-°°-*, f^~k) forms an extraordinary coho-
mology theory (in the category of spaces, maps, and homotopies under 
consideration). Furthermore, Spanier-Whitehead duality is satisfied 
[39]: 

If X is a closed bounded subset of a Banach space E, then there is a 
canonical isomorphism 7r00~k(X)—^^2k(E — X) for all fe^O, where 
^fc (E — X) are the S-homotopy groups [113], defined as the direct 
limit of the sequence 

Tk(E - X) -> r*+i(5(E - * ) ) - • > *w(S'(E - X)) -> • • • , 

wfeere Sj(E — X) denotes the jth iterated suspension of the space E—X. 

In particular, ?r*(Z) is a free abelian group, and there is a bijective 
correspondence between its generators and the bounded components 
of E - X . 

If we take X = 5, the unit sphere in a Hubert space E, then 7r00_A!(5) 
is identified with the jfe-stem of the homotopy groups of spheres: 
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***-*($) « Urn nHjbCS'). 

On the other hand, T°°~k(S) can be identified with special homotopy 
classes of maps (j>: S—>P°° of the form cj>(x) ~A{x) —$(x), where A is a 
fixed linear Fredholm operator on E of index k, and <£: S-~>E is a com-
pact map [38], [39], [ l i s ] . The special case & = 0 is due to Rothe 
[98], as an application of the Leray-Schauder degree; it can be viewed 
as a variant of a classification theorem of H. Hopf. 

(D) Alexander-Pontrjagin duality suggests that a ^-codimensional 
submanifold A of X should represent some sort of homology class of 
X of dimension oo — p-} and from intersection theory of such sub-
manifolds there should be a form of Poincaré duality relating singular 
^-dimensional cohomology groups HP(X) to ^-codimensional ho
mology groups 3Coo-:p(̂ Q. We are not now in possession of a definitive 
theorem of that kind ; however, the following construction may be of 
temporary interest [7]: 

Let U be an open subset of a separable Hilbert space V. Choose an 
orthonormal base (e*)*èi for V, and let Vk be the space spanned by 
(e*)is»£fc; set Uk= UH Vk. Then the natural map inj lim Uk—^U is a 
homotopy equivalence by the lemma of Palais-Svarc, so that we have 
the canonical isomorphism H{(U) — H*(inj lim Uk) for all i £ Z . On 
the other hand, each Uk is a fe-dimensional oriented manifold, so that 
Poincaré duality in finite dimensions defines an isomorphism 

®k:H
i(Uk)-^LFHk-.i(Uk), 

where the right member denotes the singular (k—i)-homology group 
of Uk based on locally finite chains. For any coefficient group G and 
any i £ Z we let 3C*>_;([/; G) denote the inverse limit 

W^i(U, G) = proj Km LFHk^(Uk; G) 

determined by the inclusions rç: Uk—*Uk+i and the duality isomor
phisms ©A.. The elements of tfCoo-^ï/; G) can be viewed as sequences 
of cycles ( • • • , zk-i, Zk+i-i, • • • ), where Zk-i = v^k+i-i) and rj^ is the 
Umkehrungshomomorphismus of the inclusion map rj. 

Let U be an open subset of a separable infinite dimensional Hilbert 
space, and G a coefficient group. Assume either (1) Hi(U) is finitely 
generated for all i, or (2) G is a field. Then we have the canonical iso
morphism 

to:Hi(U;G)->3bn-i(U',G) 

for all iÇ^Z. 
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Examples [7] show that some restrictions such as (1) or (2) are 
necessary; however, we do not know whether that is merely due to 
a defect in our definition of 30,^^(11', G). 

(E) The following constructions were first given in [30], [32] in a 
differentiable context (using the inverse function theorem), and in 
the present more general and improved form in Namioka [87], using 
a local fibre structure of certain maps to replace the inverse function 
theorem. 

Let M be a. manifold modeled on a locally convex topological vector 
space, 5 a finite polyhedron, and So a subpolyhedron of S. For any 
subset PCM we let C(S, 5 0 ; M, P) = CP(M) denote the totality of 
continuous maps (5, So) —>(M", P) with the topology of uniform con
vergence. Suppose that P is a closed submanifold of M"of codim(M, P) 
= £ ^ 1 , and that (M, P) is an oriented pair. Taking for So a vertex 
of S we find that (CW(.M), Cp(M)) is an oriented pair of codimension 
p, and from the theorem in (A) we have the canonical isomorphism 

4>: H*(CP(M)) -> H*P(CM(M), CM-P(M)), 

with its special multiplicative structure. 
EXAMPLE. We specialize S to be the closed unit interval, and fix a 

point m0 G Af. Let Co AM) = {xECM(M): x(0) =m0 , x ( l ) £ P } . Tak
ing into account the contractibility of CO,M(M) we obtain the linking 
isomorphism 

X: H*-I(CO,M-P(M)) -> H^(CO,P(M)) 

for i > 0 , where ^ = codim(ikf, P ) . (Let us observe in passing that if M 
is a Hilbert space E, then Co,p(E) (resp., CO,E-P(E)) has the homo-
topy type of P (resp., E—P), and our isomorphism becomes the Alex
ander duality isomorphism X: Hi-1(E—P)->Hi-*>(P) for i > 0 . ) 

Especially interesting is the situation in which P , Q are closed sub-
manifolds of M with P (resp., Q) contained in M—Q (resp., in M—P) 
as a deformation retract. Applying the preceding isomorphism twice 
shows that the cohomology of Co,p(M) is periodic. For instance, let 
M be the w-sphere Sn with P , Q antipodal points; then Co,p(Sn) has 
the homotopy type of the loop space S25w, and the linking isomor
phism \: Hi~1(QSn)-^Hi-n(USn) expresses M. Morse's theorem that 
H3'(üSn)=Z ii j = 0 mod (n — 1), and 0 otherwise. 

Other applications to the computation of the cohomology of path 
spaces, of spaces of circles, of multiplicative structures (both in co
homology and homology), can be found in [32], [87]. 
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