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1. Let QiX) denote the maximal ring of quotients (in the sense of 
Johnson [4] and Utumi [5]) of the ring C(X) of continuous real-
valued functions on the completely regular Hausdorff space X, This 
ring has been studied by Fine, Gillman, and Lambek [ l] and realized 
by them as the direct limit of the subrings C(V), Va, dense open sub­
set of X (i.e., the union of these C(F)'s, modulo the obvious equiva­
lence relation). From this representation of Q(X), it follows that if X 
and F have homeomorphic dense open subsets, then Q(X) and Q(Y) 
are isomorphic. The full converse to this is false (see below). In this 
note a proof of the following is described. 

THEOREM 1. Let X and Y be separable metric spaces. If Q(X) and 
Q(Y) are isomorphic, then X and Y have homeomorphic dense open sub­
sets. 

In particular, the spaces Rn, w = l, 2, • • • (i£ = the reals) have 
pairwise nonisomorphic Q's, thus settling a question1 raised in [ l ] . 
Tha t Q(R) is not isomorphic to <2(i£w), f ° r w > l , was shown by F. 
Rothberger and J. Fortin. (See [2], and [l, p. 16].) 

The main purpose of this note is to present a fairly simple solution 
to this question, and therefore the possible generalizations of Theo­
rem 1 will not be discussed here. These generalizations, and related 
questions, will be treated in detail in a later paper. 

The proof of Theorem 1 will now be described. 

2. Homomorphisms of C(Y) into C(X) are well understood [3, 
Chapter 10]. If r : X—»F is continuous, <fi(f)=f o r defines a homo­
morphism </>: C{Y)—*C(X). Conversely, if Y is realcompact, and 
</>: C(Y)—*C(X) is a homomorphism with </>(l) = 1, then <j> is induced 
by a continuous function in this manner. 

Now, let Wo be a dense open subset of X, and let r : W0—»F be 
continuous and additionally satisfy : for each dense open subset V of 
F, r - 1 [ F ] is dense in X. Then <j>(f) =ƒ o r defines a homomorphism 
4>: Q{Y)-*Q(X). Evidently, 4> satisfies 

(*) for each dense open subset V of F, there is a dense open sub­
set W of X such that 0[C(V)] CC(W). 

1 The author is indebted to Professor Nathan J.Fine for communicating this ques­
tion, and for many valuable conversations concerning it. 
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Conversely, if Y is hereditarily realcompact, and </>: Q(Y)—*Q(X) is 
a homomorphism with <j>(\) = 1, and satisfying (*), then <j> is induced 
by a continuous function in the manner described. 

(*) states that <f> respects the direct limit representations for the 
Q's. A homomorphism satisfying (*) will be called a dl-homomorphism, 
and an isomorphism <f> such that both <t> and <frl satisfy (*), a bi-dU 
isomorphism. 

PROPOSITION 2. Let X and Y be hereditarily realcompact. Q(X) and 
Q(Y) are isomorphic by a bi-dl-isomorphism iff X and Y have homeo-
morphic dense open subsets. 

The situation with X and (3X is interesting. For V a dense open 
subset of fiXy and f€zC(V), define <fi(f) —/| VC\X. A dl-isomorphism 
<j>: Q(fiX) —>Q(X) results. In [ l] it is shown that each continuous 
function on a dense open subset of X is extendible to a continuous 
function on a dense open supset of /3X; hence <j> is onto Q(X). (jrl is 
a dl-isomorphism iff each dense open subset of X is C-embedded in 
some dense open subset of /3X. Choose for X the rationals P. Like 
any realcompact space, P is C-embedded in no space in which P is 
dense, and cj>~1 is not a dl-isomorphism. In fact, there is no dl-isomor­
phism of Q(P) onto Q((3P), for it can be shown that such a mapping 
would be induced by a homeomorphism of a dense open subset of 
fiP onto a subset of P , and such homeomorphisms do not exist. 

3. For / , gG.Q(X), define ƒ ̂ g if ƒ (x) ^g(x) for a l l x £ d o m / H d o m g. 
Q(X) is thus a partially ordered ring. Q*(X) (the subring of bounded 
functions) is a metric space under 

p(J, g) = sup{ | ƒ (» - g(x) | : x G d o m / P i dom g}. 

(For much more on these matters, see [l].) 

LEMMA 3. Let X be separable and first-countable. Let A be a lattice 
subring of Q(X) which contains constants and is closed under bounded 
inversion (i.e., if fÇzA and / ^ l , then 1//G-4); let A* be complete 
(metrically, under p). Then there is a dense open subset V of X with 
ACC(V). 

The proof of this goes as follows. If, for every V, A<X.C(V), then 
the "singularities" of the functions in A are dense in some open set G\ 
hence, some countable subset {pi, p2, • • • } of these singularities is 
also dense in G. For each n,fnÇ:A* can be found for which the oscilla­
tion of fn a t pn is nonzero. Upon suitable choice of real numbers 
ai, ai, - - -, the partial sums of Xlw^i Unfn form a Cauchy sequence 
in A* with no limit in Q(X). 
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Theorem 1 is easily proved from Lemma 3. Let X and Y be sepa­
rable metric spaces, and let<£ be an isomorphism of Q(Y) onto Q(X). 
By routine arguments (<j> preserves order, etc.), for any dense open 
subset V of F, 0 [C(F) ] satisfies the hypotheses of Lemma 3. Hence 
<£ (and by the same reasoning, <j>~1) is a dl-isomorphism. Proposition 2 
now applies. 
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