FOURIER SERIES WITH POSITIVE COEFFICIENTS

BY R. P. BOAS, JR.¹

Communicated by A. Zygmund, April 22, 1966

I shall state a number of results on sine or cosine series with nonnegative coefficients; proofs of these and some related theorems will appear elsewhere.

The following theorems are known.

A [1], [8]. If $\lambda_n \downarrow 0$, $\phi(x) = \sum \lambda_n \cos nx$, and $0 < \gamma < 1$, then $\sum n^{\gamma-1}\lambda_n < \infty$ if and only if $x^{-\gamma}\phi(x) \in L$.

A' [6]. If λ_n are the Fourier coefficients of ϕ , $\lambda_n \ge 0$, and $1 < \gamma < 3$, then $\sum n^{\gamma-1}\lambda_n < \infty$ if and only if $x^{-\gamma}[\phi(x) - \phi(0)] \in L$.

B [2], [3]. If $\lambda_n \downarrow 0$, $\phi(x) = \sum \lambda_n \cos nx$, $1 , and <math>(1-p)/p < \gamma < 1/p$, then $x^{-\gamma}\phi(x) \in L^p$ if and only if $\sum n^{p+p\gamma-2}\lambda_n^p < \infty$.

C [7]. If $\lambda_n \downarrow 0$, $\phi(x) = \sum \lambda_n \cos nx$, and $0 < \gamma < 1$, then $\phi(x) \in \text{Lip } \gamma$ if and only if $\lambda_n = O(n^{-\gamma-1})$.

There are similar theorems for sine series.

The following theorems generalize A and C (with different necessary and sufficient conditions), to series with nonnegative coefficients, and give a result that is related to B as A' is related to A.

THEOREM 1. If $\lambda_n \ge 0$, λ_n are the Fourier sine or cosine coefficients of ϕ and $0 < \gamma < 1$, then

(1)
$$\sum n^{\gamma-1}\lambda_n < \infty$$

if and only if

(2)
$$\int_{a+}^{\pi} (x-a)^{-\gamma} \phi(x) dx \text{ converges, } 0 \leq a < \pi.$$

More precisely, (1) is necessary for (2) with a=0 and sufficient for (2) for all a—an illustration of the principle that a Fourier series with nonnegative coefficients tends to behave as well at all points as it does at 0. (The case a=0 is a special case of a more general result of Edmonds [4, p. 235].) Theorem A' can be generalized in the same way if $1 < \gamma < 2$.

¹ Supported by National Science Foundation Grant GP-3940.

THEOREM 2. If $\lambda_n \geq 0$ and λ_n are the Fourier sine or cosine coefficients

THEOREM 2. If $\lambda_n \ge 0$ and λ_n are the Fourier sine or cosine coefficients of ϕ , and $1/p < \gamma < (p+1)/p$, then

(3)
$$|x-a|^{-\gamma} |\phi(x)-\phi(a)| \in L^p, \quad 0 \leq a < \pi,$$

if and only if

(4)
$$\sum_{n=1}^{\infty} n^{p\gamma-2} \left(\sum_{k=n}^{\infty} \lambda_k \right)^p < \infty.$$

More precisely, (4) is necessary for (3) if a=0 and sufficient for (3) for all a. Theorem B can be obtained as a corollary.

THEOREM 3. If $\lambda_n \ge 0$, λ_n are the Fourier sine or cosine coefficients of ϕ , and $0 < \gamma < 1$, then $\phi \in \text{Lip } \gamma$ if and only if

(5)
$$\sum_{k=n}^{\infty} \lambda_k = O(n^{-\gamma}).$$

When $\lambda_k \downarrow 0$, (5) is equivalent to $\lambda_n = O(n^{-1-\gamma})$, so Theorem C is a corollary. Theorem 3 is formally the limiting case $p = \infty$ of Theorem 2.

Theorem 3 fails when $\gamma = 1$. There are a number of substitutes, among them the following result, in which Λ_* and λ_* denote the classes of continuous functions ϕ such that $\phi(x+h) + \phi(x-h) - 2\phi(x)$ = O(h) or o(h), uniformly in x [10, p. 43].

THEOREM 4. If $\lambda_n \ge 0$ and λ_n are the Fourier cosine coefficients of ϕ , then (5) with $\gamma = 1$ is a necessary and sufficient condition for either f(x) - f(0) = O(x) or $f \in \Lambda_*$;

(6)
$$\sum_{k=n}^{\infty} \lambda_k = O(n^{-1})$$

is necessary and sufficient for either f(x) - f(0) = o(x) or $f \in \lambda_*$; if (6) holds, then f'(x) exists [f' is continuous] if and only if $\sum k\lambda_k \sin kx$ converges [converges uniformly].

Paley (see [5, p. 72]; [9]) showed that if the sine series of a continuous function has nonnegative coefficients then the series converges uniformly. As a corollary of Theorem 4 we have a localization of this.

THEOREM 5. If ϕ has nonnegative sine coefficients λ_n and

(7)
$$\sum_{n}^{\infty} k^{-1} \lambda_{k} = O(1/n)$$

864

then $\sum \lambda_k \sin kx$ converges (for any particular x) if and only if ϕ is the derivative of its integral at x.

In fact, if ϕ is continuous, $\int \phi \in \lambda_*$ and so (7) holds.

References

1. R. P. Boas, Jr., Integrability of trigonometric series. III, Quart. J. Math. Oxford Ser. (2) 3 (1952), 217-221.

2. ____, On the integrability of functions defined by trigonometrical series, Math Z. 66 (1956), 9–12.

3. Y.-M. Chen, Some asymptotic properties of Fourier constants and integrability theorems, Math. Z. 68 (1957), 227-244.

4. S. M. Edmonds, *The Parseval formulae for monotonic functions*. II, Proc. Cambridge Philos. Soc. 46 (1950), 231-248.

5. G. H. Hardy and W. W. Rogosinski, *Fourier series*, Cambridge Univ. Press, New York, 1944.

6. P. Heywood, On the integrability of functions defined by trigonometric series, Quart. J. Math. Oxford Ser. (2) 5 (1954), 71-76.

7. G. G. Lorentz, Fourier-Koeffizienten und Funktionenklassen, Math. Z. 51 (1948), 135-149.

8. G. Sunouchi, Integrability of trigonometric series, J. Math. Tokyo 1 (1953), 99-103.

9. O. Szász, On the partial sums of certain Fourier series, Amer. J. Math. 59 (1937), 696-708.

10. A. Zygmund, Trigonometric series, 2d ed., Vol. 1, Cambridge Univ. Press, New York, 1959.

NORTHWESTERN UNIVERSITY