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Let G be a compact Lie group and M a compact G manifold with-
out boundary, i.e. a C* manifold with a differentiable action of G on
M. M is said to be G-cobordant to zero M ~g¢ 0 if there exists a
compact G manifold Q! with dQ =M. Note that in this case Mg
(the fixed point set of M) =0Q¢q. M ¢ and Q¢ are both disjoint unions
of closed submanifolds (of varying dimension) of M, Q respectively.
Let »(M ¢, M) denote the normal bundle of Mgin M;v(Me, M)—Mg
is a G-vector bundle in the sense of [5]. A partial converse to the
statement ¥(M¢q, M) =0v(Qg, Q) is given by

ProrositioN 1 ([2, p. 10]). If »(Mg, M) is cobordant to zero as a
G-vector bundle, i.e. if there exists a manifold W and a G-vector bundle
E—W with 9W= Mg, E|dW=v(M g, M) then M is G-cobordant to a
manifold M’ with Mg= .

Proor. Form the manifold M XIU;E(1) where E(1) denotes the
unit disc bundle in E and

frEQ)| oW = v(Me, M) _:f‘_% M X 1.
Then note that, after smoothing, =
M X TU; EQ)) = M X0 (M X 1 — f(EQ) | W) \U 0E(1))
=M X0U M.

Hence, one may view the G-cobordism class of »(Mgq, M) as a
first obstruction to finding a cobordism M~ g 0. Higher obstructions
are formulated in terms of a spectral sequence. For simplicity we
deal only with the unoriented case.

Let V be an orthogonal representation of G and let ¥ denote the
n-fold direct sum of V with itself and S(V) the unit sphere in V. Con-
sider the category of manifolds G(V) where M is in g(V) iff M can be
imbedded in S(V") for some #. One can then define the cobordism
groups 9,(V)=9,(g(V)) of n dimensional G-manifolds in g(7V)
(see [5]). It was shown in [5] that if G is finite or abelian then
N (V) =l ™ (TH( V@ R), ) where 7/ (Tk(V22+3@®R), ) de-
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notes the equivariant homotopy classes of maps of S(V2**+*@ R) into
Tw(V2+3@® R) the Thom space of the universal bundle of k-planes in
V3@ R. Let f be such a map; then proposition 1 may be reinter-
preted as saying

ProrosiTION 1. Any homotopy of
fl SV @ R)g: S(Vr+s @ R)¢ — Tw(V+* & R)¢

may be covered by a homotopy of f.

It was shown in [5] that there are only a finite number of con-
jugacy classes of isotropy groups occurring in G(V); let (Hy), - - -,
(H,) denote the conjugacy classes ordered by (H,) <(H,) iff there is
a g&G with gH,g ' CH; but gH,g ' H;. Define the level H;>n if
H;<H; and level H;>n—1; level G=0 by definition and level
H;=n if level H;>n—1 but not level H;>n. We may filter g(V) by
subcategories G{(V) where M is in G¥(V) if for each x &M level
(G,;) 24 and G, is the isotropy group of x. One then has the corre-
sponding cobordism groups D, ;= N,(G¥(V)). Let D, =D, for 150
and let D™ denote the image of D, ; in D,,0=9,(V). We define
E,;:n=0, 120, as the cobordism group of differentiable G-vector
bundles E—M where M is a compact G-manifold and

(i) dim E=n;

(ii) Eisin g(V);

(iii) S(E) is in g(V)*! where S(E) is the unit sphere bundle in E;

@iv) level (G,) =1 for all xE M.

Define E,,;=0 for 7 <0. Vector bundles with fibre dimension zero
are included.

THEOREM. There is a graded exact couple

w
D—— D
N
E
where
D = Z D”';, E = Z En.i
with

T 0 7,4 7,141
En,€==’ En,i = D /D .
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In particular

Nu(V) = 2 Eni.
=0

The maps are as follows: Define w: D, ,;—D, ;-1 by w([M]) = [M];
if M is in G V) then M is in G=(V). Define 9: E,,i—D,_1,:1 by
I(E—-M)=S(E); 0 is well defined by (i), (ii), and (iii). Define
v: Dn,i—E,; by v([M]) = [v(M;, M)] where M;= {xE M|level (G.)
=i}; M; is a closed submanifold since M is in (V). Conditions
(i)—(@iv) are clearly satisfied. Exactness follows from straightforward
geometric arguments.

The groups E,,; may be described as follows: let H be an isotropy
group on level 7 and let W be an 7 dimensional representation of H
with WC V'|H for some s where V’IH means V* considered as an
H space.

Let P(H, W) be the group of N(H) (normalizer of H in G) equi-
variant bundle maps of WXgN(H) into itself which are diffeomor-
phisms on the base space N(H)/H. We have the exact sequence
0—0n(W)—P(H, W)—N(H)/H—0 where Ox(W) is the group of H
equivariant orthogonal transformations of W.

PROPOSITION 2. E,; is isomorphic to the direct sum of W, (BP(H, W))
over all such representations of H and all conjugacy classes of subgroups
on level i; N,(BP(H, W)) denotes the ordinary cobordism group (see
[1, p. 45)) of the classifying space of P(H, W) and t=n—dim W
—dim G/H.

Proor. Let E—M be a bundle in E,; with (G,) = (H) for all x E M.
By equivariance, it suffices to consider the N(H) bundle E| Mg
—Mu(Muy={xEM|G,=H}) since M=Mzg Xya G ([3, p. 42]);
but My is a N(H)/H principal bundle over M /G and hence one can
see that E| My—Mz—M/G is an N(H) fibre bundle with fibre
N(H)Xyx W and structural group P(H, W) ([4, p. 40]). Any ele-
ment of E,,; is the disjoint union of such bundles.

To describe the differential we let KCH be an isotropy group on
level 141; then Wl K =W,® W, where K operates trivially on W.
S(Wy) is a N(K, H)/K principal bundle where N(K, H) denotes the
normalizer of K in H. Form the N(H) bundle U over BP(H, W) with
fibre N(H) Xug S(W), U = Ep Xp (N(H) Xz S(W)) where Ep
—BP(H, W) is the universal principal bundle; then Uy/N(H)
= U(K) is a bundle over BP(H, W) with fibre S(W,)/N(K, H) and
there is a map 4: U(K)—BP(K, W) which classifies the normal



1966] COBORDISM OF GROUP ACTIONS 869

bundle of Uk, in U. Then for any [M, f]E5%,(BP(H, W)) we have
the diagram

roE L v L sru, wy

l s 1

M > BP(H, W).
Clearly d([M, f]) =2 [f*U(K), i0fx] EEn1,i1 where [f*U(K),
i0fx] EN(BP(K, W), s=n—1—dim Wy—im G/K, and the sum
extends over all conjugacy classes (K) on level 141 with K CH.
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