ON A CERTAIN INVARIANT OF A LOCALLY COMPACT GROUP

BY HORST LEPTIN

Communicated by E. Hewitt, April 28, 1966

Group here always means a locally compact Hausdorff group, subgroup means a closed subgroup. Let G be a group, H a subgroup and G/H the locally compact homogeneous space of left cosets $\dot{x}=xH$. We denote by $\Re(G)$ [$\Re(G/H)$] the family of all compact subsets of G[G/H]. The group G acts on G/H in a natural way. If $X \subset G$ and $Y \subset G/H$, write XY for the set of all elements $x\dot{y}, x \in X, \dot{y} \in Y$. Now assume that G/H has a nontrivial invariant positive measure $d\dot{x}$, e.g. the left invariant Haar measure, if H is normal. For a measurable set U in G/H let |U| or $|U|_{G/H}$ be its measure. Then we define:

$$I(G/H) = \sup_{K \in \Re(G)} \inf_{\substack{U \in \Re(G/H) \\ |U| > 0}} \frac{|KU|_{G/H}}{|U|_{G/H}}$$

Evidently $1 \leq I(G/H) \leq \infty$ and 1 = I(G/H) if G/H is compact. Let *E* be the trivial subgroup of order one in *G*. We identify *G* and *G/E*.

For a positive Radon measure μ and a Borel function f on G, the convolution $\mu * f$ is defined as

$$\mu * f(x) = \int_G f(y^{-1}x) \ d\mu(y).$$

If \mathfrak{F} is a set of Borel functions, let $\mu * \mathfrak{F}$ be the set of all $\mu * f, f \in \mathfrak{F}$ (if this set is well defined). For $1 \leq p \leq \infty$, let $\mathfrak{P}^p(G)$ be the usual \mathfrak{P}^p -space of the group G. If μ is a positive bounded Radon measure, then $\mu * \mathfrak{P}^p(G) \subset \mathfrak{P}^p(G)$ for all $p \geq 1$. In [2] I proved a partial converse of this fact, as follows.

Let p > 1. If $\mu * \mathfrak{L}^p(G) \subset \mathfrak{L}^p(G)$ and $I(G) < \infty$, then μ is bounded. As I pointed out in [2], this implies the following.

Let p > 1. If $\mathfrak{X}^p(G)$ is closed under convolution and $I(G) < \infty$, then G is compact.

This latter statement, without the hypothesis $I(G) < \infty$, is the so called \mathfrak{P}^p -conjecture, stated and discussed by Żelazko, Rajagopalan and others [3], [4], [5], [6], [7].

The main result of this note is an inequality for I(G), which implies the finiteness of I(G) for a fairly large class of groups. Actually it reduces the problem of checking this finiteness to the case of simple Lie groups and finitely generated discrete groups. THEOREM 1. Let H be a subgroup of G. If the homogeneous space G/H has a nontrivial positive invariant measure, then

$$I(G) \leq I(G/H)I(H).$$

We start with some definitions and lemmas. Let dx, $d\xi$ and $d\dot{x}$ be the (left) invariant measures in G, H and G/H respectively. For $f \in \Re^1(G)$, $\dot{x} \in G/H$ let

$$f(\dot{x}) = \int_{H} f(x\xi) d\xi.$$

The function \dot{f} is well defined almost everywhere on G/H and belongs to $\mathfrak{P}^1(G/H)$; furthermore

$$\int_{G} f(x) dx = \int_{G/H} \left(\int_{H} f(x\xi) d\xi \right) d\dot{x} = \int_{G/H} f(\dot{x}) d\dot{x},$$

(see e.g. [1, §2, no. 5]).

The image of a set $X \subset G$ in G/H is denoted by \dot{X} , the characteristic function of a set A by χ_A .

LEMMA 1. Let $K \in \Re(G)$, $W \in \Re(H)$ and $Q = K^{-1}K \cap H \in \Re(H)$. Then

$$|KW|_{G} \leq |\dot{K}|_{G/H} |QW|_{H}.$$

PROOF. For $\dot{x} \in \dot{K}$, $x \in \dot{x}$ and $\xi \in H$ we have $x\xi \in KW$, hence $\chi_{KW}(x\xi) = 0$, $\dot{\chi}_{KW}(\dot{x}) = 0$. For $x \in K$ we have

$$x^{-1}KW \cap H \subset K^{-1}KW \cap H = (K^{-1}K \cap H)W = QW,$$

hence $\chi_{KW}(x\xi) = \chi_{x^{-1}KW}(\xi) \leq \chi_{QW}(\xi)$ and

$$\dot{\chi}_{KW}(\dot{x}) = \int_{H} \chi_{KW}(x\xi) \ d\xi \leq \int_{H} \chi_{QW}(\xi) \ d\xi = |QW|_{H}.$$

Finally

$$|KW|_{G} = \int_{G} \chi_{KW} dx = \int_{G/H} \dot{\chi}_{KW} d\dot{x} = \int_{K} \dot{\chi}_{KW} d\dot{x} \leq |QW|_{H} \int_{\dot{K}} d\dot{x}$$
$$= |\dot{K}|_{G/H} |QW|_{H}.$$

LEMMA 2. For $K \in \Re(G)$ the following inequality holds:

$$|\dot{K}|_{G/H} \leq \inf_{W \in \mathfrak{R}(H)} \frac{|KW|_{G}}{|W|_{H}} \leq |\dot{K}|_{G/H}I(H).$$

PROOF. The right part of the inequality is an immediate consequence from Lemma 1. Now let $x \in K$ and $W \in \mathfrak{R}(H)$. Then $W \subset x^{-1}KW$, hence for $\xi \in H$ we have:

$$\chi_{KW}(x\xi) = \chi_{x^{-1}KW}(\xi) \ge \chi_{W}(\xi),$$

$$|KW|_{G} = \int_{\vec{K}} \int_{H} \chi_{KW}(x\xi) \ d\xi \ d\dot{x} \ge \int_{\vec{K}} \int_{H} \chi_{W}(\xi) \ d\xi = |\vec{K}|_{G/H} |W|_{H},$$

which proves the left part of the inequality.

Now we can prove Theorem 1. Take K, $U \in \Re(G)$ with $|U|_G > 0$. For $\epsilon > 0$, Lemma 2 implies the existence of a $W \in \Re(H)$ with $|W|_H > 0$ such that

$$|(KU)^{\cdot}|_{G/H} = |\dot{K}U|_{G/H} \leq \frac{|KUW|_{G}}{|W|_{H}} \leq |\dot{K}\dot{U}|_{G/H}(I(H) + \epsilon),$$
$$|\dot{U}|_{G/H} \leq \frac{|UW|_{G}}{|W|_{H}} \cdot$$

It follows that

$$\inf_{V \in \mathfrak{X}(G)} \frac{\left| \begin{array}{c} KV \right|_{G}}{\left| \begin{array}{c} V \right|_{G} \end{array}} \leq \frac{\left| \begin{array}{c} KUW \right|_{G}}{\left| \begin{array}{c} UW \right|_{G} \end{array}} \leq \frac{\left| \begin{array}{c} \dot{K}U \right|_{G/H}}{\left| \begin{array}{c} \dot{U} \right|_{G/H}} \left(I(H) + \epsilon \right).$$

Now $\Re(G/H) = \{ \dot{U} \mid U \in \Re(G) \}$, so taking the infimum over \dot{U} and then the supremum over $K \in \Re(G)$ we get $I(G) \leq I(G/H)(I(H) + \epsilon)$. This proves Theorem 1.

COROLLARY 1. Let $G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = E$ be a normal series of G. If $I(H_i/H_{i+1}) < \infty$ for $i=0, \cdots, n-1$, then $I(G) < \infty$. If $I(H_i/H_{i+1}) = 1$ for $i=0, \cdots, n-1$, then I(G) = 1.

COROLLARY 2. If G has a finite normal series with compact or abelian factors, then I(G) = 1.

COROLLARY 3. If G is as in Corollary 2, every p-admissible positive Radon measure is finite. If in this case, $\mathfrak{L}^p(G)$ is closed under convolution for some p > 1, then G is compact.

In [2] a measure μ was called *p*-admissible, if $\mu * \mathcal{X}^p \subset \mathcal{X}^p$. The next corollary states the main result of [5].

COROLLARY 4. If G is solvable, and $\mathfrak{P}(G)$ is closed under convolution for some p > 1, then G is compact.

The next two theorems are especially useful for discrete groups.

THEOREM 2. If H is an open subgroup of G, then $I(H) \leq I(G)$.

PROOF. Let the Haar measures in G and H be normalized, so that $|X|_G = |X|_H$ for $X \subset H$. Let $\Delta(x)$ be the modular function of G. Then for M measurable in H and $x \in G$, we have: $|Mx|_G = \Delta(x) |M|_G = \Delta(x) |M|_H$. Now, if $U \in \Re(G)$, there exist $x_1, \dots, x_r \in G$ and $U_1, \dots, U_r \in \Re(H)$ such that $U = \bigcup_i^r \bigcup_i x_i$. For $K \in \Re(H)$ it follows that $K \cup = \bigcup_i^r K \cup_i x_i$, the union being disjoint. Hence

$$\frac{|KU|_{G}}{|U|_{G}} = \frac{\sum_{i=1}^{r} |KU_{i}x_{i}|_{G}}{\sum_{i=1}^{r} |U_{i}x_{i}|_{G}} = \frac{\sum_{i=1}^{r} \Delta(x_{i}) |KU_{i}|_{H}}{\sum_{i=1}^{r} \Delta(x_{i}) |U_{i}|_{H}}$$
$$\geq \min_{i} \frac{\Delta(x_{i}) |KU_{i}|_{H}}{\Delta(x_{i}) |U_{i}|_{H}} \geq \inf_{V \in \Re(H)} \frac{|KV|_{H}}{|V|_{H}},$$

and finally

$$I(G) \geq \sup_{K \in \mathfrak{K}(H)} \inf_{U \in \mathfrak{K}(G)} \frac{|KU|_G}{|U|_G} \geq \sup_{K \in \mathfrak{K}(H)} \inf_{V \in \mathfrak{K}(H)} \frac{|KV|_H}{|V|_H} = I(H).$$

THEOREM 3. Let Ω be the system of all open, compactly generated subgroups of G. Then

$$I(G) = \sup_{H \in \Omega} I(H).$$

PROOF. From Theorem 2 it follows that $J = \sup_{\Omega} I(H) \leq I(G)$. If $K \in \Re(G)$, there exists $H \in \Omega$ with $K \subset H$ and

$$\inf_{\mathfrak{K}(G)} \frac{|KU|_G}{|U|_G} \leq \inf_{\mathfrak{K}(H)} \frac{|KV|_H}{|V|_H} \leq I(H) \leq J,$$

and hence $I(G) \leq J$, I(G) = J.

COROLLARY 5. If G is abelian, then I(G) = 1.

This was proved in [2]. It also follows easily from Theorems 1 and 3.

COROLLARY 6. Let G be discrete and Φ the family of all finitely generated subgroups of G. Then $I(G) = \sup_{\Phi} I(H)$.

COROLLARY 7. Let G be discrete and Ψ a family of subgroups such that (1) for A, $B \in \Psi$ there exists $C \in \Psi$ with A, $B \subset C$, (2) $G \subset = \bigcup_{H \in \Psi} H$. Then $I(G) = \sup_{\Psi} I(H)$.

This follows from the previous corollary.

HORST LEPTIN

COROLLARY 8. I(G) = 1 if G is discrete and locally finite.

COROLLARY 9. Suppose that G is discrete and contains a well-ordered chain Φ of subgroups H_{μ} such that:

(1) $H_0 = E = \{e\}, e \text{ the identity in } G;$

(2) H_{μ} is normal in $H_{\mu+1}$;

(3) $H_{\lambda} = \bigcup_{\mu < \lambda} H_{\mu}$, if λ is a limit ordinal;

(4) $G = H_{\omega}$ for an ordinal ω ;

(5) $H_{\mu+1}/H_{\mu}$ is either abelian or locally finite (more general: $I(H_{\mu+1}/H_{\mu}) = 1$).

Then I(G) = 1.

PROOF. We use induction on ω . If $\omega = 0$, there is nothing to prove. Now assume Corollary 9 is true for ordinals less than ω . Then especially $I(H_{\lambda}) = 1$ if $\lambda < \omega$, hence Corollary 7 gives I(G) = 1 if ω is a limit ordinal. Otherwise $\omega = \tau + 1$, $I(H_{\tau}) = 1$, $I(G/H_{\tau}) = 1$ and so I(G) = 1, according to Corollary 1.

We conclude with some remarks and a list of open problems.

1. Do there exist groups G with $1 < I(G) < \infty$? In [2] we mentioned that $I(G) = \infty$ if G is the discrete free group with countably many free generators. Theorem 2 tells us that $I(G) = \infty$ if G is discrete and contains a nonabelian free subgroup.

2. Let *H* be a subgroup of *G* such that G/H is compact, but eventually without having an invariant measure. Is it still true that $I(G) \leq I(H)$, or at least that $I(G) < \infty$ if $I(H) < \infty$?

3. Let H be a discrete central subgroup of G. Is I(G/H) = I(G)?

So far as I can see, an affirmative answer to questions 2 and 3 would imply that every G contains an open normal subgroup H with I(H)= 1. It seems likely that there are also connections between the problems discussed here and the existence of invariant means on C(G)and $\mathfrak{X}^{\infty}(G)$.

References

1. N. Bourbaki, Integration, Chapter 7, Paris, 1963.

2. H. Leptin, Faltungen von Borelschen Maßen mit L^v-Funktionen auf lokal kompakten Gruppen, Math. Ann. 163 (1966), 111-117.

3. M. Rajagopalan, On the L^p-space of a locally compact group, Colloq. Math. 10 (1963), 49-52.

4. ——, L^p-conjecture for locally compact groups, Math. Ann. (to appear).

5. M. Rajagopalan and W. Żelazko, L^p-conjecture for solvable locally compact groups, J. Indian Math. Soc. 29 (1965), 87-92.

6. W. Żelazko, On the algebras L_p of locally compact groups, Colloq. Math. 8 (1961), 115–120.

7. —, A note on L^p-algebras, Colloq. Math. 10 (1963), 53-56.

University of Heidelberg, Germany

874