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Group here always means a locally compact Hausdorff group, sub-
group means a closed subgroup. Let G be a group, H a subgroup and
G/H the locally compact homogeneous space of left cosets x=xH.
We denote by f(G) [R(G/H)] the family of all compact subsets of
G|G/H]. The group G acts on G/H in a natural way. If X CG and
Y CG/H, write XY for the set of all elements xy, x&EX, y& Y. Now
assume that G/H has a nontrivial invariant positive measure dx,
e.g. the left invariant Haar measure, if H is normal. For a measurable
set Uin G/H let | U| or | U| ¢/u be its measure. Then we define:

I(G/H) = sup  inf | KUlom
keg@) veswm | Ulem
1U1>0
Evidently 1=I(G/H)< « and 1=I(G/H) if G/H is compact. Let
E be the trivial subgroup of order one in G. We identify G and G/E.

For a positive Radon measure u and a Borel function f on G, the

convolution u * f is defined as

wn () = f F12) ducs).

If § is a set of Borel functions, let u * § be the set of all u *f, fEF
(if this set is well defined). For 1 =<p =< «, let (G) be the usual
r-gpace of the group G. If u is a positive bounded Radon measure,
then u * €(G) C(G) for all p=1.In [2] I proved a partial converse
of this fact, as follows.

Let p>1. If p* (G) C¥(G) and I(G) < », then u is bounded.

As I pointed out in [2], this implies the following.

Let p>1. If 22(G) is closed under convolution and I(G) < «, then
G is compact.

This latter statement, without the hypothesis I(G) < «, is the so
called £»-conjecture, stated and discussed by Zelazko, Rajagopalan
and others [3], [4], |5], [6], [7].

The main result of this note is an inequality for I(G), which implies
the finiteness of I(G) for a fairly large class of groups. Actually it re-
duces the problem of checking this finiteness to the case of simple
Lie groups and finitely generated discrete groups.
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THEOREM 1. Let H be a subgroup of G. If the homogeneous space
G/H has a nontrivial positive invariant measure, then

I(G) £ I(G/H)I(H).

We start with some definitions and lemmas. Let dx, d¢ and d% be
the (left) invariant measures in G, H and G/H respectively. For
fEYGR), xEG/H let

s = [ 0 a

The function f is well defined almost everywhere on G/H and belongs
to {(G/H); furthermore

J s 2z - fm( [ se0 d¢) ds - s,

(see e.g. [1, §2, no. 5]).
The image of a set X CG in G/H is denoted by X, the character-
istic function of a set 4 by xa.

LemMa 1. Let KERG), WERH) and Q=K-'KNHER(H).
Then

| KW ¢ = | Klom| QW |a.

Proor. For %G K, xE% and §EH we have x(EKW, hence
xxw(xE) =0, xgw(%) =0. For x€K we have

2 KWNHCKXKWNH=(K'KMNHW = QW,
hence xxw(x£) =x1xw (&) S xew(£) and

e () = f s (8) dt < f xaw(®) di = | QW |,

Finally

lKWlG=fxxwdx=f xxw dd
Q G/H

fixwdoég |QW!Hf.daé
K K

| Klom | QW |
LeEMMA 2. For K EQ(G) the following inequality holds:

I

| KW |o

I KIG/H é 1nf

< | Kle/xI(H).
S T = | ElomI (D
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Proor. The right part of the inequality is an immediate conse-
quence from Lemma 1. Now let x € K and W &€ R(H). Then
W Cx KW, hence for §&H we have:

XKW(xE) = Xx—IKW(E) = XW(E)»
= ¢ = = ¢ w H)
| KW | fk fom(xs) dds 2 fK fﬂxw(é) a5 = | Klom| W]

which proves the left part of the inequality.

Now we can prove Theorem 1. Take K, USR(G) with | U| ¢>0.
For €>0, Lemma 2 implies the existence of a W& R(H) with
| W|#>0 such that

. KUw . .
| (KU) |¢)a = | KU om0 < I___I__ﬁ]_!_l_@— < | KU |am(H) + ¢),
"
. |UW[G
U < .
I |G/H = IWlH

It follows that

"y | KV e 3 | KUW |g - IKVIG/H
vee@ | Vle | vw e | Ulem

(I(H) + o).

Now R(G/H)={U|UER(G)}, so taking the infimum over U and
then the supremum over KER(G) we get I(G) 2 I(G/H)(I(H)+e¢).
This proves Theorem 1.

CororLLARY 1. Let G=HDH\D -+ - DH,1DH,=E be a normal
series of G. If I(H;/Hip1) < for 1=0, - -+, n—1, then I(G) < «.
If I(H;/H;1) =1 for =0, - - -, n—1, then I(G) =1.

COROLLARY 2. If G has a finite normal series with compact or abelian
factors, then I(G) =1.

CoROLLARY 3. If G is as in Corollary 2, every p-admissible positive
Radon measure is finite. If in this case, ®2(G) s closed under convolution
for some p>1, then G is compact.

In [2] a measure u was called p-admissible, if u * 2 C.
The next corollary states the main result of [5].

COROLLARY 4. If G s solvable, and {2(G) 1s closed under convolution
for some p>1, then G is compact.

The next two theorems are especially useful for discrete groups.
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THEOREM 2. If H is an open subgroup of G, then I(H) £I(G).

Proor. Let the Haar measures in G and H be normalized, so that
| X| ¢=|X|xfor X CH. Let A(x) be the modular function of G. Then
for M measurable in H and x&G, we have: IMxl a=A(x) | M| @
=A(x) [ M| a. Now, if UER(G), there exist %, - - -, x.EG and
Uy, - - -, U.ERH) such that U=U] Ui, For KERK(H) it follows
that KU =U] KU;, the union being disjoint. Hence

| KU o E ‘KUixi|G Z;A(%HKU“H

2 | Uaila 2 A@) | U

=1 1=1

A(w) | KUsla _ . . |KV|x

H

= min ————~ 2> inf ——,
i Adx) ] UilH VeRW®H) | V|H
and finally
. | KU e . | KV |x
I(G) =z sup inf  ———— 2= sup inf ————— = I(H).
regan veew |Ule keeany vesan | Vl|m

THEOREM 3. Let Q be the system of all open, compactly generated sub-
groups of G. Then

I(G) = sup I(H).
Heg
Proor. From Theorem 2 it follows that J=supg I(H) 2I(G). If
KeER(G), there exists HEQ with K CH and
KUl _ V]

2 < 1m £,

inf
eay | Vlm

e@ |Ule
and hence I(G) £J, I(G)=.
COROLLARY 5. If G s abelian, then I(G) =1.

This was proved in [2]. It also follows easily from Theorems 1 and 3.

COROLLARY 6. Let G be discrete and ® the family of all finitely gen-
erated subgroups of G. Then I(G) =sups I(H).

CoRroLLARY 7. Let G be discrete and ¥ a family of subgroups such
that (1) for A, BEY there exists CEY with A, B CC, (2)G C =Ugev H.
Then I(G) =supy I(H).

This follows from the previous corollary.
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CoroLLARY 8. I(G) =1 if G is discrete and locally finite.

COROLLARY 9. Suppose that G is discrete and contains a well-ordered
chain ® of subgroups H, such that:

(1) Hy=E= {e}, e the idenlity in G;

(2) H, is normal in H,;

(3) Hh=Uu<x H,, if \ is a limit ordinal;

(4) G=H, for an ordinal w;

(5) H,1/H, is either abelian or locally finite (more general:
I(Hya/H,) =1).
Then I(G) =1.

ProoF. We use induction on w. If w=0, there is nothing to prove.
Now assume Corollary 9 is true for ordinals less than w. Then espe-
cially I(Hy) =1 if A<w, hence Corollary 7 gives I(G)=1 if w is a
limit ordinal. Otherwise w=7+1, I(H,) =1, I(G/H,) =1 and so I(G)
=1, according to Corollary 1.

We conclude with some remarks and a list of open problems.

1. Do there exist groups G with 1<I(G)<®? In [2] we men-
tioned that I(G) = « if G is the discrete free group with countably
many free generators. Theorem 2 tells us that I(G) =« if G is dis-
crete and contains a nonabelian free subgroup.

2. Let H be a subgroup of G such that G/H is compact, but
eventually without having an invariant measure. Is it still true that
I(G) £ I(H), or at least that I(G) < if [(H)<x?

3. Let H be a discrete central subgroup of G. Is I(G/H) =I(G)?

So far as I can see, an affirmative answer to questions 2 and 3 would
imply that every G contains an open normal subgroup H with I(H)
=1. It seems likely that there are also connections between the prob-
lems discussed here and the existence of invariant means on C(G)
and (G).
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