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Group here always means a locally compact Hausdorff group, sub
group means a closed subgroup. Let G be a group, H a subgroup and 
G/H the locally compact homogeneous space of left cosets x = xH. 
We denote by $(G) [®(G/H)] the family of all compact subsets of 
G [G/H], The group G acts on G/H in a natural way. If X C.G and 
Y QG/H, write XY for the set of all elements xy, x £ I , j £ Y. Now 
assume that G/H has a nontrivial invariant positive measure dx, 
e.g. the left invariant Haar measure, if H is normal. For a measurable 
set U in G/H let | U\ or | U\ G/H be its measure. Then we define: 

KU \GIH 
I{G/H) = sup inf ' • 

KG®(G) Ue®(G/H) I U \G/H 
\U\>0 

Evidently 1^I(G/H)^oo and 1=I(G/H) if G/H is compact. Let 
E be the trivial subgroup of order one in G. We identify G and G/E. 

For a positive Radon measure /x and a Borel function ƒ on G, the 
convolution /x * ƒ is defined as 

0 ) = I f(y~l%, 
J G 

M*ƒ0) = I f{y~lx) dn(y). 
J G 

If % is a set of Borel functions, let /x * g be the set of all /x * ƒ, ƒ E S 
(if this set is well defined). For l ^ £ ^ ° o , let %P(G) be the usual 
8^-space of the group G. If /x is a positive bounded Radon measure, 
then /x * 8P(G) C$P(G) for all ?̂ ^ 1. In [2] I proved a partial converse 
of this fact, as follows. 

Let p> 1. If xx * £P(G) C£P(G) and 1(G) < oo, then /x is bounded. 
As I pointed out in [2], this implies the following. 
Let p>\. If %P(G) is closed under convolution and 1(G) < <*>, then 

G is compact. 
This latter statement, without the hypothesis 1(G) < oo, is the so 

called ^-conjecture, stated and discussed by Zelazko, Rajagopalan 
and others [3], [4], [5], [6], [7]. 

The main result of this note is an inequality for /(G), which implies 
the finiteness of 1(G) for a fairly large class of groups. Actually it re
duces the problem of checking this finiteness to the case of simple 
Lie groups and finitely generated discrete groups. 
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THEOREM 1. Let H be a subgroup of G. If the homogeneous space 
G/H has a nontrivial positive invariant measure, then 

1(G) ^ I(G/H) 1(H). 

We start with some definitions and lemmas. Let dx, d% and dx be 
the (left) invariant measures in G, H and G/H respectively. For 
fe%l(G),xEG/H let 

f(x) = f f(xQ dl 

The function ƒ is well defined almost everywhere on G/H and belongs 
to $}(G/H)\ furthermore 

f f(x) dx= f (f f(xQ dt) dx= f f(x) dx, 
J G J G/H \ J H / J G/H 

(see e.g. [l, §2, no. 5]). 
The image of a set X C.G in G/H is denoted by X, the character

istic function of a set A by XA> 

LEMMA 1. Let K<E®(G), W<E®(H) and Q = K-lKr\H£®(H). 
Then 

G/H \QW\ H' 

PROOF. For x^Kj x £ x and £ E i I we have xÇÇ^KW, hence 
XKW(X%) = 0, XKW(X) = 0. For xE.K we have 

x~lKW C\ H C KrxKW C\ H = ( i T " ^ H #)TF = QW, 

hence XXTTOKÖ = XanxTr(ö ^XQTF(£) and 

XKTF(*) = f XKW(XQ d$S f XQW(Ü) d£= \QW \B. 
J H J H 

Finally 

I KW \G = I XKW dx = I xî TF dx = I x w * x ^ I QW \H \ ,dx 

= \K\OIH \QW\B. 

LEMMA 2. For ÜCG^(G) the following inequality holds: 

i • i IKW \o . . . 
| X \ai„ g inf ' ' ^ | K \0IHI(H). 

we$t(H) J W \H 
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PROOF. The right part of the inequality is an immediate conse
quence from Lemma 1. Now let x G K and W (E ®(H)- Then 
WCx^KW, hence for £ £ i ï we have: 

\KW\G= f f XKwfâ) dû dx^ f f XTT(Ö dt = I K \0IH \W\H, 

which proves the left part of the inequality. 
Now we can prove Theorem 1. Take K, Z7£$(G) with | U\ G>0. 

For e > 0 , Lemma 2 implies the existence of a WÇz®(H) with 
| T F | H > 0 such that 

. . i \KUW\O , . . , 
| (KUy \G/H = | KU \Q1H S , • S I KU \G,H(I(H) + e), 

I W\H 

, • , \UW\G 
1U1G,H-JÏÏV' 

It follows that 

. \KV\G \KUW\G \KU\0/H 
m f I 1 7 I ~ I TTXU I - TW\ VW+t)' 

ve®(G) \V\G \UW\G \U\GIH 

Now $ ( G / H ) = { 171 Î7G^(G)} , so taking the infimum over Ü and 
then the supremum over X e t ( G ) we get 1(G) ^I(G/H) (1(H)+ e). 
This proves Theorem 1. 

COROLLARY 1. Let G = H0DH1'Z) • • • DHn_iZ)Hn = E be a normal 
series of G. If I(Hi/Hi+i) < oo for i = 0, • • • , n — \, then 1(G) < oo. 
If I(Hi/Hi+1) = 1 /or î = 0, • • • , n - 1 , tóen 1(G) = 1. 

COROLLARY 2. If G has a finite normal series with compact or abelian 
factors, then 1(G) = 1. 

COROLLARY 3. If G is as in Corollary 2, every p-admissible positive 
Radon measure is finite. If in this case, 2P(G) is closed under convolution 
for some p>l, then G is compact. 

In [2] a measure /x was called ^-admissible, if /i * Zp C8 P . 
The next corollary states the main result of [5]. 

COROLLARY 4. If G is solvable, and %P(G) is closed under convolution 
for some p>l, then G is compact. 

The next two theorems are especially useful for discrete groups. 
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THEOREM 2. If H is an open subgroup of G, then 1(H) ^I(G). 

PROOF. Let the Haar measures in G and H be normalized, so that 
| X | G = | X | H for X C.H. Let A(x) be the modular function of G. Then 
for M measurable in H and x £ G , we have: | Mx\ G = A ( X ) | M\ G 

= A(X)\M\H. Now, if t /G$(G) , there exist Xi , , Xr EG and 
Vi, • • • , Ur<E®(H) such that 17=U; #<*<. For X G t ( H ) it follows 
that K U = \J\ KUiXi, the union being disjoint. Hence 

, r „ l Z | *#<*<|o Z A(*,) I KUi\H 

U 'G Z | J7<*< |G Z A(*,) I Ui \H 

. A(xi)\KUi\s . , | JET^U 
;> mm ; j — è mf —;—;— 

i A(xi) I Ui \H veSl(H) I V \H 
and finally 

\KU\G \KV\H 
1(G) è sup inf ~- ^ sup inf ~—~~ = 1(H). 

KeSt(H) Ue$l(G) I U \G KeSt(H) VeSt(H) | V \H 

THEOREM 3. Let Q be the system of all open, compactly generated sub
groups of G. Then 

1(G) = s u p / ( # ) . 

PROOF. From Theorem 2 it follows that 7 = sup0 1(H) g / ( G ) . If 
KE®(G), there exists H£Œ with K C.H and 

\KU\G \KV\H 
inf r ^ ^ inf I p^- ^ /(IT) ^ / , 

and hence 1(G) S J, 1(G) = J. 

COROLLARY 5. If G is abelian, then 1(G) = 1. 

This was proved in [2]. I t also follows easily from Theorems 1 and 3. 

COROLLARY 6. Let G be discrete and $ the family of all finitely gen
erated subgroups of G. Then 1(G) =sup$ 1(H). 

COROLLARY 7. Let G be discrete and ^ a family of subgroups such 
that (1) for A, BE<& there exists CE* with A, B CC, (2)G C =Ujffe* H. 
Then 1(G) = s u p * 1(H). 

This follows from the previous corollary. 
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COROLLARY 8. 1(G) = 1 if G is discrete and locally finite. 

COROLLARY 9. Suppose that G is discrete and contains a well-ordered 
chain $ of subgroups H^ such that : 

(1) Ho = E = {e}, e the identity in G ; 
(2) iJM is normal in uZ"M+r, 
(3) H\ = UM<x H», if A is a limit ordinal; 
(4) G = H» for an ordinal œ ; 
(5) Hn+i/Hp is either abelian or locally finite (more general: 

ThenI(G) = l. 

PROOF. We use induction on co. If co = 0, there is nothing to prove. 
Now assume Corollary 9 is true for ordinals less than co. Then espe
cially I(H\)~1 if X<co, hence Corollary 7 gives J(G) = 1 if co is a 
limit ordinal. Otherwise co=r + l, I(HT) = 1, I(G/HT) = 1 and so 1(G) 
= 1, according to Corollary 1. 

We conclude with some remarks and a list of open problems. 
1. Do there exist groups G with K 7 ( G ) < o o ? In [2] we men

tioned that 1(G) — 00 if G is the discrete free group with countably 
many free generators. Theorem 2 tells us that 1(G) = 00 if G is dis
crete and contains a nonabelian free subgroup. 

2. Let H be a subgroup of G such that G/H is compact, but 
eventually without having an invariant measure. Is it still true that 
1(G) S 1(H), or a t least that 1(G) < 00 if 1(H) < 00 ? 

3. Let H be a discrete central subgroup of G. Is I(G/H) = 1(G)? 
So far as I can see, an affirmative answer to questions 2 and 3 would 

imply that every G contains an open normal subgroup H with 1(H) 
= 1. I t seems likely that there are also connections between the prob
lems discussed here and the existence of invariant means on C(G) 
and 8°°(G). 
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