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Let U= U(pr) be the unitary group on complex pr space, p an odd 
prime. Let Sl QUbe the set of matrices XI where X is a complex num
ber with | X| = 1 and I is the identity matrix. Then Sl is the center of 
U and PU(pr) = PU = U/SK 

We determine the complex K* groups for the spaces PU by first 
determining the mod qK* groups of these spaces [2] then using the 
mod p Bockstein spectral sequence to obtain the p torsion. 
K*[PU(pr)] and H*[PU(pr)] have no q torsion for q^p and the 
mod p Bockstein spectral sequences for these two groups are iso
morphic; thus, 

THEOREM 5.5. H*[PU(pr), Z] and K*[PU(pr)] are isomorphic as 
abelian groups. 

The details of these proofs will be published elsewhere. The outline 
follows : 

Let Bs1 and Bu = Bu(pr) be the classifying spaces of the indicated 
groups. There are the following maps 

ƒ * BA 
U^PU-+Bsi >Bu. 

Either i or BA may be considered fibrations. We use the following 
diagram 

(i) 

K* 

K* 

PU]<-

r 
u) 

-K*[B#] 

f 
K*[Bsi/PU] 

BA' K*[B, V, •] 
Let pQ: K*[ , Z]-*K*[ , Zq] be the reduction [2] and fiK: K[ , Zq] 
->K[ , Z] the Bockstein. 3cn, <r2l • • • , apr<EK*[Bu, -]3K*[Bv] 
=Z[[erif • • • yapr]lH*[Bu]=Z[ah • • •, apr], K* [ U] = E [sah • • -,saprl 
X*[,B<s1]=Z[[3;]], JEZ**[jBi8

1]=Z[j?]. pp is onto for these groups and 
it will be convenient to use x for pp(x) when possible. kBl (<Xi) — C^^y* 
and BZ(â%) = Cjr,iy\ 

875 



876 T. PETRIE [September 

Since kBÂ (cr*) = C^y*, kB& (<Ti) = 0 mod p for i<pr\ hence it fol
lows from (1) using Zp coefficients that for i<prSXiÇ^K*[PU, Zp] 
such that ôxi = BA pp(<Ti). Let J be the set of integers j such that 
l < j < £ r a n d j i s n o t a £ t h p o w e r . A s e t F = { Yj\jQj} CK*[PU, Zp] 
is defined. Let X = {xpi\i = 0, 1, • • • , r — 1}, w = i'(^) and 
A«jE[y]®Z p[w]/«;* r . 

THEOREM 2.6. K[PU, Zp] = E [ X ] ® A as an algebra. A is iw /fee 
image of pp so that |3#(A) = 0 . 

PROOF. The £2 term of the mod p spectral sequence arising from 
the fibration U—^PU—^Bs1 is E 2 = £[SÖ"I, * • • , soy] ®Zp[y]. Since 
bXi = B& pp((Ti) it readily follows that ƒ'(#») —scti for i<pr :.dj(s<n) = 0 
for all j and i < £ r . Since J3A(<V) = ypr it follows that d2pr(s(rpr) =yp\ 
This describes the spectral sequence and we find that there is a filtra
tion of K*[PU, Zp] whose associated graded module EoK*[PUf Zp] 
is E[s<ri, • • • , S(V_i]®Zp[;y]/3;*,r. 

I t is easy to see that the xpiÇzK*[PU, Zp] represent S<TP% in 
EQK*[PU, ZP\. The y3- where chosen to represent the sa-j for j £ J . 
w represents y. This information is sufficient to show that the obvious 
map of E[X] ®A to K*[PU, Zp] is an isomorphism of algebras. 

The appropriate tool for relating the Bockstein $H in ordinary 
cohomology theory to the Bockstein |3K in K theory is the Atiyah-
Hirzebruch spectral sequence. I t is convenient to use the approach 
[lO] for obtaining this spectral sequence. 

Let %, be the infinite unitary group. Spaces B<yi(2i+2) are induc
tively defined by killing the 2ith homotopy group of B<^{2i) for 
i = l and I%(2) = -£%. In particular there is a commutative diagram 
of fiber spaces 

K[Z, 2iYl —U B<Vi(2i + 2) - ^ B<M{2i) 

(2) i | ^ + i in 

K[Z,2i]sl > PK[Z, 2i] >K[Z, 2i] 

where K[Z, 2i] is the indicated Eilenberg MacLane space with path 
space PK[Z, 2i\. Define D2\«[X, Z] = [X, B^j)8*] j ^ l , 2 = 0, 1. 
E?«[X,Z] = [X, K[Z, 2jYq] j ^ l , 2 = 0, 1. 2?= X>>.« , £1== £ E f ' . 
The maps in diagram (2) allow us to define an exact couple 

D[X, Z] — * - ^ D[X, Z] 

(3) \k jS 

El[X, Z] = H[X, Z]. 
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Define 

D2i'q[X, Zp] = [X, Bu(2j + 2)Z(P)A8Q]^ i ^ 0 , g = 0 , l , 

E2i'q[X, Zp] = [X, K[Z, 2% + 2] Zip)AsQ] i ^ 0 , ^ 0 , l 

where Z(p) =E2\JP Sl. As above we obtain an exact couple 

D[X, Zp] — - > D[X, Zp] 

(4) \kp jpS 

Ei[X, Zp] = H[X, Zp], 

Let Er[X, Z] be the spectral sequence associated with the couple 
(3) and E r [X, Zp] the spectral sequence associated with the couple 
(4). The first converges to K*[X, Z] and the second to J?*[X, Zp]. 
The map Sl->Z(p) induces maps B%(2i)z^ AsQ-^Bu(2i)slAsq and 
K[Z, 2i]z^Asl->K[Z, 2i]sl+sQ which in turn define a map of the 
exact couple (4) into the exact couple (3). /3r: E r[X, Zv]—>Er[X, Z] 
is the induced map of spectral sequences. We show that PI—(3H and 
that j8fl0 = Eo(j8x): E0K*[Xf ZP]-+E0Ë*[X, Z]. 

Theorem 2.6 implies that the spectral sequence Er[PU, Zv] 
=* K[PU, Zp] collapses so that H[PU, Zv] = EjjPU, Zp] 
= E0K*[PU, Zp] and /3tf=/3e0. Let xpi, wEH*[PU, Zp] be the ele
ments represented in E0i£*[PE/, Zp] by x^-, w G Z * [ P [ / , Z p ] . Then 
&H(ocvi) =\i,owpl and the highest power of p dividing X»,o is p1""1"1. One 
observes that dfiK(xpi) = 0 so that PK(XP%) £ l m i ' ; thus ^K{OCPÎ) =a.iWv% 

+ 22i>oX<.iW2,'+'. I t follows that EjjÎK)Xpi = oiiWpi in E0X*[PÎ7, Z ] . 
EO(J3K) =POO=PH implies that X*-,o = a*. 

We must find a new set of generators zpi of the algebra K*[PU, Zp] 
to replace the xpi and so that J8K(V) =Xi,oWp*. Precisely 

THEOREM 4.4. TT&ere is a subset Z 0 = { v | i = 0, 1, • • • , r —l} o/ 
X*[PZ7, Zp] swcfe that K*[PU, Zp] is isomorphic to E[Z 0 ]®A as an 
algebra and such that /3K(A) = 0 , ^K(Zpi) =\t,oWp\ 

Theorem 4.4 gives sufficient information to determine the mod p 
Bockstein spectral sequence of K*[PUy Z ] . Let Uk be the set of 
products zpr-k+iwv , zpr-k+2Wp , • • • , zpr-iwp and 
Wk CZo the set {21, zp, • • • , spr-*-i}. In particular, f7i = 0, Ur+i= Uw 

and Wr = 0. 

THEOREM 4.5. The kth term of the Bockstein spectral sequence for 
K*[PU,Z]is 

(i) Ek = E[Y]®E[Wk]®E[Uk]®{E[zpr~k]®Zp[w]/wpk+1} 
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(ii) fa, the kth differential, is a derivation, j6fc = 0 in EfFj^EfPFfc] 
®E[Uk] and &0v-*) =^-^w^~Kfor Xj_lf0 = (l/p*-1)}*-*,». 

Theorems 4.4 and 4.5 hold for the ordinary cohomology of PU. In 
particular, the mod p Bocks tein spectral sequences for K*\PU, Z] 
and H*[P U, Z] are isomorphic. 
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