EXTENSIONS OF COMMUTING ISOTONE FUNCTIONS¹

BY FRANK W. OWENS

Communicated by D. Scott, June 6, 1966

The following problem was suggested as a research problem by Ralph De Marr in Bull. Amer. Math. Soc. 70 (1964), 501:

Let A be a nonempty subset of the unit interval I. Let f_0 , $g_0: A \to A$ be isotone functions (i.e., $f_0(x) \leq f_0(y)$ if $x \leq y$) such that $f_0(g_0(x)) = g_0(f_0(x))$ for all $x \in A$. Can f_0 and g_0 be extended to isotone functions f, $g: I \to I$ which still commute?

We shall show that the answer is yes under certain additional assumptions, and give a counterexample to the problem in the above form.

DEFINITION. $A \subset I$ is called left (right)-closed if any decreasing (increasing) sequence in A has a limit in A. We write $A^{L}(A^{R})$ for the left (right)-closure of A.

REMARK. A is closed iff A is left-closed and right-closed, i.e., $\overline{A} = A^L \cup A^R$.

THEOREM 1. If $A \cup \{\inf A\}$ is left-closed or $A \cup \{\sup A\}$ is right-closed, there exist commuting isotone extensions.

PROOF. We give the proof for the case $A \cup \{\inf A\}$ is left-closed. The case $A \cup \{\sup A\}$ is right-closed is similar. Extend f_0 and g_0 to $[0, \inf A] \cup A$ by defining them to be zero on $[0, \inf A]$ if $\inf A \notin A$, and to be their respective values at $\inf A$ if $\inf A \in A$. Next extend f_0 and g_0 to $B = [0, \inf A] \cup A \cup [\sup A, 1]$ by defining them to be one on $[\sup A, 1]$ if $\sup A \notin A$, and to be their respective values at $\sup A$ if $\sup A \in A$. Define $j: I \rightarrow B$ by $j(x) = \inf \{y \in B \mid x \leq y\}$. j is isotone on I, and $j \mid B =$ the identity function on B. The required extensions are $f = f_0 j$ and $g = g_0 j$. f and g are isotone since the composition of two isotone functions is isotone. $f_0 j \mid A = f_0$ and $g_0 j \mid A = g_0$. f and g commute on I since $f_0 j g_0 j = f_0 g_0 j = g_0 j j = g_0 j f_0 j$.

Note. The proof of the case $A \cup \{\sup A\}$ is right-closed is the same except that we define $j: I \to B$ by $j(x) = \sup \{y \in B \mid y \le x\}$.

DEFINITION. Let $h: A \rightarrow A$ be isotone. Define $h^L: A^L \rightarrow A^L$ and $h^R: A^R \rightarrow A^R$ by

$$h^{L}(x) = h(x), x \in A$$
$$= \inf \{ h(y) \mid x \le y \in A \}, x \in A^{L} - A$$

¹ Partially supported by N. S. F. Grant GP-5855.

and

$$h^{R}(x) = h(x),$$
 $x \in A$
= $\sup \{h(y) \mid x \ge y \in A\}, \quad x \in A^{R} - A.$

REMARK. h^L and h^R are well defined. h^L is right continuous on A^L if h is right continuous on A, and h^R is left continuous on A^R if h is left continuous on A.

THEOREM 2. If f_0 and g_0 are both right or left continuous on A, there exist commuting isotone extensions.

Outline of Proof. f_0^L and g_0^L (f_0^R and g_0^R) commute on $A^L(A^R)$ if f_0 and g_0 are right (left) continuous on A. Apply Theorem 1 to get $f_0^L j$ and $g_0^L j$ ($f_0^R j$ and $g_0^R j$) for the required extensions.

These and similar theorems can be generalized to complete lattices. We shall now give a counterexample to the problem in its weak form. Let $A = [0, 1/2) \cup (1/2, 1]$. Define f_0 and g_0 by

$$f_0(x) = 3/4$$
 for $0 \le x \le 3/8$
= $4x/3 + 1/4$ for $3/8 \le x < 1/2$
= $11/12$ for $1/2 < x \le 3/4$
= 1 for $3/4 < x \le 1$.

and

$$g_0(x) = 3/4$$
 for $0 \le x < 1/2$
 $= x + 1/4$ for $1/2 < x \le 2/3$
 $= 11/12$ for $2/3 \le x < 11/12$
 $= 1$ for $11/12 \le x \le 1$.

 f_0 , $g_0: A \rightarrow [3/4, 1] \subset A$ are isotone functions which commute on $A(f_0(g_0(x)) = g_0(f_0(x)) = 11/12$ for $0 \le x < 1/2$, and $f_0(g_0(x)) = g_0(f_0(x)) = 1$ for $1/2 < x \le 1$). The unique isotone extensions f and g of f_0 and g_0 are defined at x = 1/2 by f(1/2) = 11/12 and g(1/2) = 3/4. But f(g(1/2)) = f(3/4) = 11/12 and g(f(1/2)) = g(11/12) = 1.

STANFORD UNIVERSITY