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The purpose of this paper is to show that certain known results 
concerning separable spaces hold also for nonseparable reflexive 
Banach spaces. Our main result (Theorem 1) proves a special case 
of a conjecture of H. H. Corson and the author [ l] while the corollary 
proves some conjectures of V. Klee (see for example [2]). In order 
to state Theorem 1 we introduce the following notation : Let T be a 
set; by c0(T) we denote the Banach space of scalar valued functions ƒ 
on T, such that {7; | / ( Y ) | > e } is finite for every e > 0 , with the sup 
norm. 

THEOREM 1. Let X be a reflexive Banach space. Then there is a one to 
one bounded linear operator from X into Co(T) for a suitable set T. 

This theorem was proved in [3] for spaces X which have the metric 
approximation property (M.A.P.) introduced by Grothendieck. We 
shall show here how to modify the proof in [3] so that it will not de­
pend on the assumption concerning the M.A.P. As noted in [3] the 
following corollary is an easy consequence of Theorem 1 and known 
results. 

COROLLARY 1. Let X be a reflexive Banach space. Then 
(i) X has an equivalent strictly convex norm. 
(ii) X has an equivalent smooth norm. 
(iii) The norm of X is Gateaux differentiable at a dense subset of X. 
(iv) If K is a bounded closed convex subset of X then K is the closed 

convex hull of its exposed points. 

We pass to the proof of Theorem 1. I t is clearly enough to con­
sider only real spaces. Our first lemma holds for a general Banach 
space. 

LEMMA 1. Let X be a Banach space and let B be a finite-dimensional 
subspace of X. Let k be an integer and let e > 0. Then there is a finite-
dimensional subspace Z of X containing B such that for every subspace 
Y of X containing B with dim Y/B = k there is a linear operator 
T: Y-+Z with \\T\\ ^1+e and Tb = bfor every bEB. 

1 The research reported in this document has been sponsored by the Air Force 
Office of Scientific Research under Grant AF EOAR 66-18, through the European 
Office of Aerospace Research (OAR) United States Air Force. 
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PROOF. Let P be a bounded linear projection from X onto B and let 
U= (ƒ—p)X. Let M be a positive number such that 

(1) (M + k)/(M - *) < 1 + e, k2(2k + 3)||7 - P|| < cikf. 

Let {^}^„i be a finite set in B such that for every ü?£JB with ||&|| ^M 
there is a ju such that || & — &/*!I <M~l. Let ^2k be the sphere of radius 1 
in the k dimensional space Rk

y that is X^—j^^C^i» * * ' » f̂c)"> 
S*^i_^<= 1} • Let {X /}^i be a finite subset of ^k such that for every 

<M~l (in Rk we take the norm 
^ 1} and let 

X E ^ f c there is a j with ||X>—X| 
(Yiï)m)>LetSu=={u;ueU,\\u 

fiSuXSuX - - - XSu->Rmp 

be defined by 

fn,Auh • # * y Uk) 7. \%Ui + h» 1 ^ /* g f», 1 ^ i ^ £. 

We choose now qk elements {uj}, l^y^q, l^i^-k, in Su such that 
for every (ui, u2, • • • ,Uk)ÇzSuXSuX • • * X5tr there is a 7 such that 

(2) 

1 ^ M ^ w, 1 ûj S p-

Let Z be the subspace of X spanned by B and the {w?}, 1^7 ^q, 
l^i^k. We claim that this subspace has the required properties. 

Take any YQX with YZ)B and dim Y/B = k. Then there are vec­
tors {w;}*=i in U such that ||^»|| = 1 for every i, 

(3) 
* M / * 2 \ 1/2 / 2 h 

z2 X»-#» = ( X/ X» 1 / k for every choice of real {X,}i=»i 
*=i II \ »=i / / 

and F = s p a n {B, UI, u*, • • • , Uk}. Let now 7 be such that (2) holds 
for these m, • • • , uk. Define T: Y->Z by T(^\&i+b) = ] L X ^ 7 + & . 

We claim that T has the required properties, that is, that for every 
X=(Xi, • • • , X i ) G E * a n d every bGB 

(4) $3 ^iUi + b (1 + e) X) A<«< + * 

Assume first that ||&||>AT. Then || 2X«7+&| | â | l&| |+* and 
||2j*-iXitf<+&|| è||ö||—fe and (4) follows from the first inequality 
of (1). 
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Assume next that ||ft|| SM and let /x and j be such that ||&M~"^|| 

< M ~ 1 and | |X'-X|| <M~\ Then 

(5) 
1 k 

23 XiUi + b 
1 «=i |l ~/p ,i(«l, • • • , « * ) + (* + 1)/M 

and 

(6) 
1 k 

23 ^iUi + & 
1 •-! 

è/nj(«i, • • • «*) " ( * + l ) / M . 

Therefore, by (2), 

(7) || 
k 1 

23 x<«» + & 
VII 

A; 1 

+ (2k + 3)/M. 

Also, by (3) 

(8) 1 = 
* « « II 

t=l 11 

* 
23 x<«, 
1=1 

||s*1l'- 4\ 1 * 1 
23 *<«* + ft 

1 i=l 1 
The inequality (3) follows now from (7), (8), and the second inequal­
ity of (1). This concludes the proof of the lemma. 

LEMMA 2. Let X be a reflexive Banach space and let B be a finite 
dimensional subspace of X. Then there exists a linear operator T: X-^X 
such that || T\\ — 1, the range of T is separable and Tb — b for b(~B. 

PROOF. Let Zn~2)B, n = \, 2, • • • , be subspaces of X given by 
Lemma 1 f or k = n and e = n~l. Let Z be the subspace of X spanned by 
U£Li Zn. Let E be a finite-dimensional subspace of X containing B 
with dim E/B=n. Then there is a linear operator TE: E—>Z such 
that TEb = b, & £ £ , and ||Tj5?|| ^1+n"1. We extend TE to a map (not 
linear) TE: X—>Z by putting TEx = 0 for xÇzX^E. In the space of 
maps from X to Z we take the topology of pointwise convergence and 
Z is taken in the w topology. By Tychonoff's theorem the net {TE} 
(the spaces E are ordered by inclusion) has a subnet converging to a 
map T: X—>Z. I t is easily verified that T is linear, || r | | = 1 and Tb = b 
for every & £ £ . 

From Lemma 2 we easily get (see the proof of Lemma 1 in [3]) that 
the following stronger version of it is true. 

LEMMA 3. Let Xbea reflexive Banach space, let {#»}*„i be a finite set 
in X, let {fj}jLi be a finite set in X* and let e>0 . Then there is a linear 
operator T: X-+X with \\ T\\ = 1 such that Txi = x%for every i, \\ T*fj—fj\\ 
< e for every j , and TX is separable. 
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We are now ready to prove 

PROPOSITION 1. Let X be a reflexive Banach space and let Y and Z be 
separable subspaces of X and X* respectively. Then there is a separable 
subspace W of X containing Y and a linear projection P from X onto 
W such that \\P\\ = 1 and P*f=ffor every fÇ=±Z. 

PROOF. Let {ƒ/ }™s=1 be a dense subset of Z. By Lemma 3 we can con­
struct, inductively, a sequence { Yn} *=1 of separable subspaces of X 
and a sequence Tn of linear operators Tn : X—» Yn such that 

(9) || r*|| = 1, n = l , 2 , . - • 

(10) llT**/, - fs\\ £ tr\ l^jSn, I I = 1 , 2 , - - -

(11) Tnxk
{ = x\ f o r l g * ^ » , 0 = * = » - l , and » = 1 , 2 , • • • 

where {Xi) i^i is a dense subset of Y and Y = Y. 

I t is easily verified that T^=span U£L0 Yn and P = the limit of a 
convergent subnet{ Tn}n=i have the required properties. 

The proof that Proposition 1 implies Theorem 1 is given in [3]. 
The M.A.P. is used in [3] only in order to prove Proposition 1. 
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