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Let R and R; (j=1, 2) be Riemann surfaces, either open or closed.
We denote by M(R) Royden’s algebra associated with R, and by R*
Royden’s compactification of R (see [5], [6], and [7]). We have seen
in [5] that every algebraic isomorphism of M(R;) onto M(R;) induces
(and is induced by) a quasiconformal mapping of R; onto R.. In
other words, the algebraic structure of M(R) characterizes the quasi-
conformal structure of R. In this connection there naturally arises
the following question: What can we say about the topological struc-
ture of R*? This question leads us to a new notion, Royden’s map,
which seems to be of considerable function-theoretic interest.

Here we report, without proofs, some of the properties of Royden’s
maps. Details will be published elsewhere.

1. Moduli of A-sets. An open subset G of R is called normal if
for any point z in @G there exists a parametric disk U, with center z,
such that 3G U is a simple arc connecting two boundary points of U.

An A-set A is a pair (G, G2) of two nonempty normal open sets Gy
and G, in R with GiDG,. An annulus in a parametric disk is an
example of an 4-set.

We associate with an A-set 4 =(Gi, Gy) a family {¢} of functions
¢ which are continuous on Gy—Gs, of class C! in Gi1—G;,, and have
boundary values ¢|0G;=j (j=1, 2). The modulus of A, denoted
mod A4, is the number in [0, ) given by

1 mod A = 2x/infye(sy D(¢),

where D(¢) is the Dirichlet integral of ¢ taken over Gi—G.. If 4 is
an annulus in a parametric disk, then this definition coincides with the
usual one.

2. Royden’s map. A topological mapping T of R; onto R, carries
an A-set A =(Gy, Gy) on R; to the A-set TA =(TGi, TG;) on R.. We

call T a Royden’s map if there exists a constant K(4)=1 such that
2) K(A)'mod 4 < mod T4 = K(4) mod 4,

for every A-set 4 on R;. Here K(4) may depend on 4. If we can find
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K(A) independent of 4, then T is a quasiconformal mapping, and
vice versa [3]. Therefore the class of all Royden’s maps includes
the class of all quasiconformal mappings. Furthermore, the inclusion
is always proper for every pair of R and R,.

3. A relation to Royden’s compactification. The reason we call
mappings with property (2) Royden’s maps is clarified by the fol-
lowing:

THEOREM 1. 4 Royden's map T of Ry onto R, can be continued to a
unique topological mapping T* of RT onto Ry. Conversely, a topological
mapping T* of RY onto Ry always maps Ry onto Ry and T = T*I Riisa
Royden’'s map of Ry onto R,.

The first assertion is known for quasiconformal mappings [4]. We
may summarize Theorem 1 as follows: the topological structure of R*
characterizes the quasiconformal structure of R at the ideal bound-
ary.

4. Boundary behavior. The topological extension 7* of a Royden’s
map T of R, onto R; gives a topological mapping of T'y onto I';, where
I'=R*—R is the Royden’'s boundary of R. Let A be the Royden’s har-
monic boundary of R, i.e., the totality of regular points in I' with re-
spect to the Dirichlet problem [7]. Then

THEOREM 2. The topological extension T* of a Royden's map T of
R, onto R, gives a topological mapping of Ay onto A,.

The properties REOQg, Onp, or Ofp are all characterized by the set
theoretic properties of A [6]. Therefore, as a corollary of Theorem 2,
we conclude that each of the classes Og, Ogp, and Ofjp is preserved
under Royden’s maps. This assertion generalizes theorems of Pfluger
[8] and Royden [9].

5. The case for the half plane. Let 7" be a Royden’s map of the
upper half plane U= {zl Im(z) >0} onto itself. We also denote
U= {z|Im(z) =0} and U= {z|Im(z) 20}.

THEOREM 3. The map T can be continued to a topological mapping
Tof Uonto T.

This is, of course, well known for quasiconformal mappings [1].
Clearly T is both directly and indirectly conformally invariant. Hence
we may assume that TI dU is a monotone increasing topological map-
ping of (— «, ») onto itself. Then

THEOREM 4. There exists a constant p=1 such that
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for any xEdU and t>0.

The inequality (3) is often referred to as the p-condition. The valid-
ity of (3) is well known for quasiconformal mappings [2].

From the features of Royden’s maps listed above we conclude that
Royden’s maps are topological mappings which are “quasiconformal
at the ideal boundaries.”
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