ROYDEN'S MAP BETWEEN RIEMANN SURFACES1

BY MITSURU NAKAI

Communicated by A. E. Taylor, June 10, 1966

Let R and R_j (j=1, 2) be Riemann surfaces, either open or closed. We denote by M(R) Royden's algebra associated with R, and by R^* Royden's compactification of R (see [5], [6], and [7]). We have seen in [5] that every algebraic isomorphism of $M(R_1)$ onto $M(R_2)$ induces (and is induced by) a quasiconformal mapping of R_1 onto R_2 . In other words, the algebraic structure of M(R) characterizes the quasiconformal structure of R. In this connection there naturally arises the following question: What can we say about the topological structure of R^* ? This question leads us to a new notion, Royden's map, which seems to be of considerable function-theoretic interest.

Here we report, without proofs, some of the properties of Royden's maps. Details will be published elsewhere.

1. **Moduli of** A-sets. An open subset G of R is called *normal* if for any point z in ∂G there exists a parametric disk U, with center z, such that $\partial G \cap U$ is a simple arc connecting two boundary points of U.

An A-set A is a pair (G_1, G_2) of two nonempty normal open sets G_1 and G_2 in R with $G_1 \supset \overline{G}_2$. An annulus in a parametric disk is an example of an A-set.

We associate with an A-set $A = (G_1, G_2)$ a family $\{\phi\}$ of functions ϕ which are continuous on $\overline{G}_1 - G_2$, of class C^1 in $G_1 - \overline{G}_2$, and have boundary values $\phi \mid \partial G_j = j$ (j = 1, 2). The *modulus* of A, denoted mod A, is the number in $[0, \infty)$ given by

(1)
$$\mod A = 2\pi/\inf_{\phi \in \{\phi\}} D(\phi),$$

where $D(\phi)$ is the Dirichlet integral of ϕ taken over $G_1 - \overline{G}_2$. If A is an annulus in a parametric disk, then this definition coincides with the usual one.

2. Royden's map. A topological mapping T of R_1 onto R_2 carries an A-set $A = (G_1, G_2)$ on R_1 to the A-set $TA = (TG_1, TG_2)$ on R_2 . We call T a Royden's map if there exists a constant $K(A) \ge 1$ such that

(2)
$$K(A)^{-1} \bmod A \leq \bmod TA \leq K(A) \bmod A,$$

for every A-set A on R_1 . Here K(A) may depend on A. If we can find

¹ The work was sponsored by the U. S. Army Research Office—Durham, Grant DA-AROD-31-124-G 742, University of California, Los Angeles.

- K(A) independent of A, then T is a quasiconformal mapping, and vice versa [3]. Therefore the class of all Royden's maps includes the class of all quasiconformal mappings. Furthermore, the inclusion is always proper for every pair of R_1 and R_2 .
- 3. A relation to Royden's compactification. The reason we call mappings with property (2) Royden's maps is clarified by the following:

THEOREM 1. A Royden's map T of R_1 onto R_2 can be continued to a unique topological mapping T^* of R_1^* onto R_2^* . Conversely, a topological mapping T^* of R_1^* onto R_2^* always maps R_1 onto R_2 and $T = T^* | R_1$ is a Royden's map of R_1 onto R_2 .

The first assertion is known for quasiconformal mappings [4]. We may summarize Theorem 1 as follows: the topological structure of R^* characterizes the quasiconformal structure of R at the ideal boundary.

- 4. Boundary behavior. The topological extension T^* of a Royden's map T of R_1 onto R_2 gives a topological mapping of Γ_1 onto Γ_2 , where $\Gamma = R^* R$ is the Royden's boundary of R. Let Δ be the Royden's harmonic boundary of R, i.e., the totality of regular points in Γ with respect to the Dirichlet problem [7]. Then
- THEOREM 2. The topological extension T^* of a Royden's map T of R_1 onto R_2 gives a topological mapping of Δ_1 onto Δ_2 .

The properties $R \in O_G$, O_{HD} , or O_{HD}^n are all characterized by the set theoretic properties of Δ [6]. Therefore, as a corollary of Theorem 2, we conclude that each of the classes O_G , O_{HD} , and O_{HD}^n is preserved under Royden's maps. This assertion generalizes theorems of Pfluger [8] and Royden [9].

5. The case for the half plane. Let T be a Royden's map of the upper half plane $U = \{z \mid \operatorname{Im}(z) > 0\}$ onto itself. We also denote $\partial U = \{z \mid \operatorname{Im}(z) = 0\}$ and $\overline{U} = \{z \mid \operatorname{Im}(z) \geq 0\}$.

Theorem 3. The map T can be continued to a topological mapping \overline{T} of \overline{U} onto \overline{U} .

This is, of course, well known for quasiconformal mappings [1]. Clearly T is both directly and indirectly conformally invariant. Hence we may assume that $\overline{T} \mid \partial U$ is a monotone increasing topological mapping of $(-\infty, \infty)$ onto itself. Then

THEOREM 4. There exists a constant $\rho \ge 1$ such that

(3)
$$\rho^{-1} \le \frac{\overline{T}(x+t) - \overline{T}(x)}{\overline{T}(x) - \overline{T}(x-t)} \le \rho$$

for any $x \in \partial U$ and t > 0.

The inequality (3) is often referred to as the ρ -condition. The validity of (3) is well known for quasiconformal mappings [2].

From the features of Royden's maps listed above we conclude that Royden's maps are topological mappings which are "quasiconformal at the ideal boundaries."

BIBLIOGRAPHY

- 1. L. V. Ahlfors, On quasiconformal mappings, J. Analyse Math. 3 (1953-1954), 1-58, 207-208.
- 2. A. Beurling and L. V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142.
 - 3. H. Künzi, Quasikonforme Abbildungen, Springer-Verlag, Berlin, 1960.
- 4. M. Nakai, On a ring isomorphism induced by quasiconformal mappings, Nagoya Math. J. 14 (1959), 201-221.
- 5. ——, Algebraic criterion on quasiconformal equivalence of Riemann surfaces, Nagoya Math. J. 16 (1960), 157-184.
- 6. ——, A measure on the harmonic boundary of a Riemann surface, Nagoya Math. J. 17 (1969), 181-218.
- 7. ——, Genus and classification of Riemann surfaces, Osaka J. Math. 14 (1962), 153-180.
- 8. A. Pfluger, Sur un propriété de l'application quasi conforme d'une surface de Riemann ouverte, C. R. Acad. Sci. Paris 227 (1948), 25-26.
- 9. H. L. Royden, A property of quasiconformal mapping, Proc. Amer. Math. Soc. 5 (1954), 266-269.

University of California, Los Angeles and Nagoya University