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The object of this note is to demonstrate the applicability of the 
methods of nonlinear functional analysis in the investigation of a com­
plex physical problem. In 1910 T. von Karman [9] introduced a sys­
tem of 2 fourth order elliptic quasilinear partial differential equations 
which can be used to describe the large deflections and stresses pro­
duced in a thin elastic plate subjected to compressive forces along its 
edge. The most interesting phenomenon associated with this non­
linear situation is the appearance of "buckling," i.e. the plate may 
deflect out of its plane when these forces reach a certain magnitude. 
Mathematically this circumstance is expressed by the multiplicity of 
solutions of the boundary value problem associated with von Kar-
man's equations. With the aid of the modern theory of linear elliptic 
partial differential equations together with functional analysis on a 
suitably chosen Hilbert function space, we are able to use the structural 
pattern of the nonlinearity implicit in Karman1 s equations to obtain a 
qualitative nonuniqueness theory for this problem. 

Among the previous studies of buckling of plates are those of 
Friedrichs and Stoker [5] and Keller, Keller and Reiss [ó], who study 
only radially symmetric solutions of circular plates. Numerical 
studies for rectangular plates have been given by Bauer and Reiss 
[2] among others. Karmand equations for general domains have 
been studied by Fife [4] and Morosov [8] in other connections. The 
authors are grateful to Professors S. Agmon and W. Littman for help­
ful suggestions. This research was partially supported by the National 
Science Foundation Grant No. GP-3904 and the Air Force Office of 
Scientific Research Grant No. 883-65. 

1. Classical and generalized solutions (for a clamped plate). Let 
0 be a bounded domain in R2 with boundary <9Q consisting of a finite 
number of arcs on each of which a tangent rotates continuously. De­
fined over 0, we consider the following system of partial differential 
equations and boundary conditions: 

A2/ = - [w, w], 

A2w = \[F, w] + [ƒ, w], 

(2) w = wx = wy = ƒ = fx = f y = 0 on dû 

1006 



ON VON KARMAN'S EQUATIONS 1007 

where [h, g]^hxxgyy + hyygxx — 2hxygxy and A2 denotes the biharmonic 
operator. This system is a version of von Karman's equations. Here w 
is a measure of the deflection of the plate and X is a parameter measur­
ing the magnitude of the compressive forces acting on 30. The func­
tion F satisfies A2,F = 0, and \F represents the so-called stress function 
in an undeflected plate under the prescribed compressive forces. The 
actual stress function in the (possibly deflected) plate will be given by 
\F-\-f. We shall assume throughout that Lw= — [F, w] is uniformly 
elliptic, as is the case, for example, in the uniformly compressed plate 
where Lw=Aw. 

DEFINITION 1. A classical solution of the system (1), (2) is a pair of 
functions {w, ƒ) with the following properties : 

(a) w{x, y) and ƒ(*, y)GO(Q)nC(S); 
(b) w(x, y) and f(x, y) satisfy (1) and (2) pointwise. 
We denote by W^CQ) the collection of all functions whose deriva­

tives of all orders up to and including two lie in L2(Q). ^2,2(0) is a 
Hubert space with respect to the inner product 

0> »)2,2 = ]C (DaU, Z)««0L2(O). 
I«l<2 

JF2>2(12) is the closure of C?(Q) in W2,2(Q). 
DEFINITION 2. A generalized solution of the system (1), (2) is a 

pair of functions {u, g) with the following properties: 
(a) u(x, y) and g(x, y)EW2,2{^) 
(b) u, g satisfy the following integral identities for all 0, \p £ W2)2{QI) * 

(3a) a{g, <t>) = A I (uxuyy<i>x — uxuxy<t>y) ; 
•Jo 

( 3 b ) a(u, $) = X I {gxyuy — gyyux)ypx + (gxyux — gxxuy)^y\ 

where a(u,v) = fn{uxxvxx+2uxyvxy+uyyvyy) and g = g + F. The justifica­
tion for the term "generalized solution" comes from the following 
result. 

THEOREM 1. Any classical solution of the system (1), (2) is a general­
ized solution {apart from constant mutiples). Conversely any generalized 
solution of (1) and (2) is a classical solution in 0 and at all sufficiently 
smooth portions of dti {apart from constant multiples). 

The former statement is a consequence of the fact that the bound­
ary value problem (1) and (2) can be written in divergence form. A 
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bootstrapping procedure using the Lp regularity theory of Agmon 
[ l ] can be used to prove the converse statement. The next result re­
duces the buckling problem to functional analysis. 

LEMMA 1. The generalized solutions of (1), (2) are identical with the 
solutions of an operator equation u~\Cu = Q defined on a separable 
Hilbert space H. Here C is a compact nonlinear mapping of the form 
LQ+T where L0 is a bounded compact self-adjoint linear operator map­
ping H into itself and Tis a compact higher order operator with T(0) = 0. 

This result is a consequence of the Sobolev Imbedding Theorem 
and the Riesz representation theorem for linear functionals on the 
Hilbert space H= JF2,2(0) X JF2,2(0). 

2. The linearized problem. Associated with the system (1) and (2) 
we consider the following linear eigenvalue problem : 

A2w - \[F, w] = 0, 
(4) 

w — wx = wv = 0 on d£2. 
LEMMA 2. The spectrum of (4) consists of eigenvalues {\n} forming a 

sequence of discrete positive numbers tending to oo with n ; the multiplic­
ity of each Xn is finite. 

If Q is a circle and [F, w] = —Aw we note that each Xw is simple, 
the first eigenfunction is radially symmetric, but not all eigenfunc-
tions are radially symmetric. (If dQ, is not smooth, we interpret (4) 
in the generalized sense, as in §1). 

3. The multiplicity of solutions of the nonlinear problem. The 
boundary value problem (1), (2) always has a solution, namely 
^ = = / E = 0 . We call this solution trivial and consider the multiplicity of 
solutions of (1) and (2) as a function of X. If we denote by X« the 
eigenvalues of the linear problem (4), arranged in increasing order, 
then the following results are valid : 

THEOREM 2. For X^Xi, there are no nontrivial generalized solutions 
of the system (1), (2). Furthermore nontrivial generalized solutions with 
sufficiently small norm can occur only for X near one of the Xw. 

THEOREM 3. If \ n is a simple eigenvalue of (4), there are positive 
numbers en and pn such that there are no nontrivial generalized solutions 
of the system (1), (2) with ||w||2,2 + ||g[|2f2^p», in the closed interval 
[Xn--€«, Xn]î and precisely two nontrivial generalized solutions (ti\, g\) 
and ( — U\, gx), with \\u\\\2,2+1|g\\I2,2 Spnfor each X in the open interval 
(Xn> An + €w). 
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THEOREM 4. Suppose 0 is a circle of radius R, and Lw=Aw, (i.e. 
we consider uniform compression on ÔŒ). If Xw is an eigenvalue of (3) 
corresponding to a radially symmetric eigenfunction, then the generalized 
solutions of the nonlinear system referred to in Theorem 3 will also be 
radially symmetric. As a function of r these generalized solutions will 
have (n — \) zeros on [0, R\. 

THEOREM 5. Suppose \n is an eigenvalue of multiplicity m of (3). 
Then there are numbers e», pn>0 such that the system (1), (2) has no 
nontrivial generalized solutions with norm Spn in the closed interval 
[Xw — €n, X»]. If m is odd, the system (1), (2) has at least two nontrivial 
generalized solutions with ||#||2,2+||g||2,2 = P for each p^pn, in the open 
interval (Xn, Xw + €w). 

REMARKS ON PROOFS. Theorem 2 can be deduced from the varia­
tional characterization of Xi and the fact that JQ[W, w]f = fa[w, f]w 
(this identity was implicitly noted in Morosov [8]). Theorem 3 and 
the first part of Theorem 5 are obtained by modifying the operator 
equation of Lemma 1 to the form w=\(LoW+Tw), ^ £ ^ 2 , 2 ^ ) , where 
T is a nonlinear mapping, homogeneous of degree 3. A bifurcation 
procedure is then applied. The results of [6], together with the com­
ments of §2 and Theorem 3, yield Theorem 4. The latter part of 
Theorem 5 is an immediate consequence of a computation of the 
topological degree of the mapping I—\C a t X=XW —en and X=Xn + en 

as in Krasnosel'skiï [7]. (Full proofs of these results will appear in 
a forthcoming paper.) 

4. Other boundary conditions. Up to this point we have imposed 
Dirichlet boundary conditions (2) on w as well as ƒ. This means the 
plate is "clamped" at its edge. We show now that other edge condi­
tions can be treated in much the same way. But first we impose an 
extra assumption on the boundary dQ,. We assume that no two of the 
boundary arcs are tangent at their intersection point (so that no 
corner is a cusp). 

We now divide the boundary into three parts d\Q,, d2Œ, and 330, 
each open relative to dQ, and such that ôO = Ud;12. We envision a 
plate which is "clamped" on diti, "freely supported" on d2Œ, and 
"free" on ô3Q. The appropriate boundary conditions for classical solu­
tions at a smooth edge would be: 

(5a) w = wx — wv = 0 on diQ, 

(5b) w = Bxw = 0 on d2&, 

(5c) Biw = B2w = 0 on dzti, 
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and 

Biw = wnn + alw88 wnV 

where 

B2w = Awn + (1 — a)w88n, 

a is a constant, — l < c r < l , p i s the radius of curvature, and subscripts 
n and 5 denote normal and tangential derivatives respectively. One 
final assumption on d*Œ is needed: 

Assumption on 3*0: Either 5iQ is non void or â20 does not lie on a 
straight line. 

The above boundary conditions yield the definition of a classical 
solution. To define a generalized solution, let 1^2,2(0) be the closure 
in the norm of 1̂ 2,2 of smooth functions vanishing on d£l and in a 
neighborhood of diO, and let 

â(U, V) = I [UXXVXX + ( 2 — 2o)UxvVxU + UyyVyy + <r(UXXVyy + UyyVXX)]. 

Bearing in mind the admissible range of <r, one may check from the 
above assumption on 3*0 that â(u> v) is a legitimate scalar product for 
Wzt2. A generalized solution is defined to be a pair wGlf2,2(^), 
g G ^2,2(0) satisfying (3) (with a replaced by â in the second equation 
only) for all <j>G ^2,2(0) and \{/G ^2,2(0). Again, a generalized solution 
can be shown to be classical up to smooth parts of the boundary in­
terior to one of the 3*0, and to satisfy the classical boundary condi­
tions there. And again, the problem may be reduced to an equation 
u-\Cu = 0 in the Hubert space ^ 2 , 2 ( ^ X ^ 2 , 2 ^ ) . 

The linearized problem is (4) with the new boundary conditions, 
and Xi is characterized by 

<*(*, *) ^ - Xi(Z*, <t>) 

for all <£G 1^2,2(0) (the higher order boundary conditions arise as 
natural boundary conditions of the associated variational problem; 
see [3]). 

THEOREM 6. Under the above assumptions on diÜ1 all the preceding 
theorems and lemmas are true when Dirichlet conditions on w are replaced 
by (5), and the obvious changes are made in the statements of those theo­
rems and lemmas. 

Added in proof, (September 21, 1966). Two extensions of the above 
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results can be proven. First, in §1, we can replace the uniform ellip-
ticity hypothesis on Lw by the assumption that Lw generates a com­
pact linear operator in the appropriate Hilbert space H. This will be 
assured, for example, if all second derivatives of F are uniformly 
bounded in A. Secondly, Theorem 5 may be completed by eliminating 
any hypothesis on the parity of m. The proof of this fact requires a 
transformation of Von Karman equations into a variational formula­
tion and an application of the Ljusternik-Schnirelmann theory of 
category. In particular if m = 2 the system (1), (2) may have 6 non-
trivial distinct solutions of small norm for each X in the open interval 
(An, Xn + €w) if a certain numerical function of quantities related to the 
linearized problem (4) is positive. 
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