LINEAR FUNCTIONALS ON THE SPACE OF QUASI-CONTINUOUS FUNCTIONS

BY JAMES A. RENEKE
Communicated by A. Zygmund, June 24, 1966
Suppose that S is a number interval and J is a nondecreasing sequence of closed and compact number intervals with limit S. Let G denote the space of all quasi-continuous functions from S into the plane. If A is a set then 1_{A} will denote the characteristic function of A. Let Ω denote the collection of subsets of S to which A belongs only in case $1_{A} G$ is contained in G. J has final set in Ω. For each integer n let $|\cdot|_{n}$ denote the norm for $1_{J(n)} G$ defined by $|f|_{n}=1$.u.b. $|f(x)|$ for all x in $J(n)$. Let $|\cdot|$ denote the function from G to the nonnegative numbers defined by

$$
|f|=\sum_{p=1}^{\infty} 2^{-p}\left|1_{J(p)} f\right|_{p} /\left(1+\left|1_{J(p)} f\right|_{p}\right)
$$

G is complete in the topology generated by the metric $\rho(f, g)$ $=|f-g|$ and $1_{J(n)} G$ is a closed linear subspace of G for each positive integer n. A linear functional F on G is continuous only in case the restriction of F to $1_{J(n)} G$ is continuous with respect to $|\cdot|_{n}$ for each positive integer n.

Theorem. For each continuous linear functional F on G there is an ordered triple $\{U, V, W\}$ of order additive functions from $S \times S$ to the plane such that if A is in Ω, A is contained in $[a, b]$, and a is not in A, then

$$
F(f)=(L) \int_{a}^{b} f U+(I) \int_{a}^{b} f(-U+V-W)+(R) \int_{a}^{b} f W
$$

for each f in $1_{A} G$. Furthermore, if u is an increasing function from $[a, b]$ such that
(1) $U(s-, s)=V(s-, s)=W(s-, s)=0$, when s is in $(a, b]$ and $u(s)=u(s-)$,
and
(2) $U(s, s+)=V(s, s+)=W(s, s+)=0$, when s is in $[a, b)$ and $u(s)=u(s+)$,
and v denotes the function from $[a, b]$ defined $b y$

$$
\begin{aligned}
v(s)= & -(R) \int_{s}^{b} d u U[, b]+(Y) \int_{s}^{b} d u(U[, b]-V[, b] \\
& +W[, b])-(L) \int_{s}^{b} d u W[, b]
\end{aligned}
$$

then $F(f)=\int_{a}^{b} d f d v / d u$ for each f in $1_{A} G$.
Proof. The proof depends on James R. Webb's idea for using F to define a class of order additive functions from $S \times S$ to the conjugate space of G and J. S. Mac Nerney's representation of an integral as the sum of a left, a right, and an interior integral. We will assume Mac Nerney's definitions and notation as given in [3]. Let $\mathcal{O B}$ denote the space of functions from S to the plane which have bounded variation on each compact subinterval of $S . \mathcal{O B}$ is contained in G. Let $\mathcal{O Q}$ denote the class of order additive functions from $S \times S$ to the plane to which V belongs only in case there is an order additive function α from $S \times S$ to the numbers such that $|V(x, y)| \leqq \alpha(x, y)$ for each $\{x, y\}$ in $S \times S$.

For each B in Ω let F_{B} denote the linear functional on G defined by $F_{B}(f)=F\left(1_{B} f\right)$. Let K denote the function from $\mathcal{O B}$ to the order additive functions from $S \times S$ defined by

$$
\begin{aligned}
K f(s, t) & =F_{(s, t]}(f) & & \text { if } s<t \\
& =0 & & \text { if } s=t \\
& =-F_{(t, s]}(f) & & \text { if } s>t .
\end{aligned}
$$

If each of n and m is a positive integer and $(s, t]$ is a subinterval of S which is contained in $J(n)$ then $\left|1_{(s, t]} f\right|_{n}=\left|1_{(s, t]} f\right|_{n+m}$ for each f in G and so $\left\|F_{(s, t)}\right\|_{n}=\left\|F_{(s, t)}\right\|_{n+m}$, where $\|\cdot\|_{n}$ denotes the norm for the conjugate space of $1_{J(n)} G$ corresponding to $|\cdot|_{n}$. If $s<r<t$ then

$$
\left\|F_{(s, r)}\right\|_{n}+\left\|F_{(r, t)}\right\|_{n}=\left\|F_{(s, t)}\right\|_{n}
$$

[5, Lemma 3.9]. Let λ denote the function $S \times S$ to the nonnegative numbers defined as follows: if s is in S then $\lambda(s, s)=0$, and if s and t are in S and $s<t$ then $\lambda(s, t)=\lambda(t, s)=$ l.u.b. $\left\|F_{(s, t)}\right\|_{n}$ for $n=1,2, \cdots$.
λ is order additive and if f is in G, n is a positive integer, $[s, t]$ is a subinterval of S contained in $J(n)$, and b is a number such that $|f(x)| \leqq b$ for each x in $[s, t]$, then $K f(s, t) \leqq \lambda(s, t) b$. Thus K satisfies Mac Nerney's Axioms I and II [3, p. 321] and his representation theorem establishes the existence of an ordered triple $\{U, V, W\}$ of functions in $\mathcal{O Q}$ such that

$$
K f(s, t)=(L) \int_{s}^{t} f U+(I) \int_{s}^{t} f(-U+V-W)+(R) \int_{s}^{t} f W
$$

for each f in $O B$ and $\{s, t\}$ in $S \times S$.
If A is in Ω, A is contained in $[a, b]$, and a is not in A, then $F(f)$ $=K f(a, b)$ for each f in the common part of $O B$ and $1_{A} G$. Since the common part of $\mathcal{O Q}$ and $1_{A} G$ is dense in $1_{A} G$ [1],

$$
F(f)=(L) \int_{a}^{b} f U+(I) \int_{a}^{b} f(-U+V-W)+(R) \int_{a}^{b} f W
$$

for each f in $1_{A} G$. If f is in $1_{A} G, c$ is a number, $g=1_{(c, \infty)} f$, and $h=1_{[c, \infty)} f$, then integration by parts [4] yields

$$
F(g)=\int_{a}^{b} d g d v / d u \text { and } F(h)=\int_{a}^{b} d h d v / d u
$$

Hence $F(f)=\int_{a}^{b} d f d v / d u$ for each f in $1_{A} G$ [1, Lemma 4.1b].
Remark. H. S. Kaltenborn [1] obtained representations of continuous linear functionals on $1_{[a, b]} G$ in terms of mean, interior, and Young integrals, but always with a remainder term. Webb, using different methods, obtained representations of continuous linear functionals on $1_{(a, b]} G$ as Hellinger integrals.

Bibliography

1. H. S. Kaltenborn, Linear functional operations on functions having discontinuities of the first kind, Bull. Amer. Math. Soc. 40 (1934), 702-708.
2. R. E. Lane, The integral of a function with respect to a function, Proc. Amer. Math. Soc. 5 (1954), 59-66.
3. J. S. Mac Nerney, A linear initial-value problem, Bull. Amer. Math. Soc. 69 (1963), 314-329.
4. ——, An integration-by-parts formula, Bull. Amer. Math. Soc. 69 (1963), 803-805.
5. James R. Webb, A Hellinger integral representation for bounded linear functionals, Doctoral Dissertation, University of Texas, Austin, 1960.

Newberry College, Clemson University

