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1. Definitions and preliminaries. We shall consider real functions 
of n variables with compact support. 

Let x — (xi, • • • , xn) be a cartesian coordinate system and let 
%i = (xi, • • • i #»-i, Xi+i, • • • , xn) be a point in n — 1 space, so that 
x = (xit Xi). A function ƒ is said to be of type BVT if there are equiva
lent functions fiy i = 1, • • • , n, such that, for almost all %i9 the varia
tion Vi(f, %i) of ƒ as a function of Xi is finite, and V< is a summable 
function of £»-. The functions of type BVT are those for which the 
partial derivatives are measures, [9], and those for which the area is 
finite, [ l ] , [4]. ƒ is said to be ACT if it is BVT and the equivalent 
ƒ,-, i = l , • • • , n, may be chosen to be absolutely continuous for al
most all Xi. These are the functions whose partial derivatives are 
functions, [3], [ l l ] , and for which the area is given by the classical 
formula [4]. 

A function ƒ is said to be essentially linearly continuous if, for every 
i = 1, • • • , n, there is an equivalent ƒ< which is continuous as a func
tion of Xi for almost all #». ƒ is said to be linearly continuous if there 
is a g equivalent to ƒ such that , for every i = 1, • • • , w, g is continuous 
in Xi for almost all £»-. I t is known, [S], that every essentially linearly 
continuous function which is of type BVT is linearly continuous, and 
tha t in the case of functions of two variables these are the ones for 
which the area is equal to the Hausdorff 2 dimensional measure of 
the graph. Linearly continuous functions which are of type BVT will 
be called of type L. 

Let ƒ be of type BVT, let (jui, • • • , JU») be its gradient measure, and 
let m be Lebesgue measure. The total variation ctf of the vector valued 
measure (w, /xlf • • • , /xn) is the area measure, [2], [8]. 

Functions of types BVT, ACT, and L may be discontinuous every
where. However, they may be considered to be the respective ana
logues of the functions of bounded variation, the absolutely continu
ous functions, and the continuous functions of bounded variation in 
the one variable case. 

1 Supported by National Science Foundation Grant No. GP 03515. A detailed 
paper will appear in Acta Mathematica. 
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2. Results and theorems. For functions of type BVT, we have the 
following beautiful theorem of Michael, [lO], [ô]. 

THEOREM A. If f is of type BVT, and has support in a cube Q, then 
for every e > 0 there is a continuously differentiate g such that the mea
sure of the set on which ƒ is different from g is less than e and \ a/(Q) 
-ag(Q)\ <e. 

An immediate consequence of this fact, which is of interest, is the 
following theorem. 

THEOREM B. ƒ G ACT if and only if f or every e > 0 there is a con
tinuously differ entiahle g such that if E= [x: f(x) 7*g{x)\ then af(E) <e 
and aQ(E) <e. 

For the case of functions of two variables, we obtained, in [7], a 
similar characterization of functions of type L. 

THEOREM C. Iff is a function of type BVT of two variables, then f is 
of type L if and only if, for every e>0 , there is a continuous g such that 
if E= [x: f(x) 7*g(x)] then af(E) <e and a9(E) <e. 

In particular, this implies that functions of type L are independent 
of coordinates. Functions which are not of type BVT may be linearly 
continuous for one coordinate system but not for another one, [7]. 

We cannot prove Theorem C for n>2. In this paper, we are able 
to prove a theorem of this sort for n variables, with continuity re
placed by approximate continuity. 

THEOREM I. If f is a function of type BVT then ƒ is linearly con
tinuous of and only if, for every e> 0, there is an approximately continu
ous g such that if E= [x: f(x) 9^g{x)\ then (Xf(E) <e and ag(E) <e. 

We shall not make any remarks regarding the proof of this theo
rem except to say that part of it involves the following fact which 
may be of interest in itself. 

THEOREM I I . If f is of type BVT and approximately continuous, 
then it is linearly continuous. 

Approximately continuous functions are taken by one-one bi-
lipschitzian mappings into approximately continuous functions. 
Theorem I accordingly yields the following result. 

THEOREM I I I . The class L is invariant under one-one bilipschitzian 
mappings. 

We itemize several related facts. 
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(a) For every ƒ GL, there is a g equivalent to ƒ which is continuous 
as a function of one variable along almost all lines in every direction. 

(b) The integral means {fm} of ƒ converge uniformly to g on almost 
all lines in every direction. Thus {fm} converges to g everywhere, 
except on a set 5 whose projection has (n — 1) measure zero on every 
hyperplane. 

(c) If M is any C1 manifold then g is defined (n — 1) almost every
where on M. 

3. Further remarks. We consider a metric which seems to play an 
important part in the classes of functions being discussed here. 

For ƒ and g of type BVT, let 

For measures /x and z>, let 

AG*, v) = sup|/x(E) -v(E)\, 

where E varies over the Borel sets, and let 

d(f, g) = *(f, g) + A(a/, a,). 

We list the following facts related to this metric. 
(a) For functions of one variable, the spaces of absolutely continu

ous functions, functions of bounded variation, and continuous func
tions of bounded variation, are all complete. 

(b) For functions of two variables, L is the completion of the set 
of continuous functions of type BVT. 

(c) For functions of n variables the spaces of functions of types 
BVT, ACT, and L are all complete. 

(d) For functions of n variables L is the completion of the set of 
approximately continuous functions of type BVT, and ACT is the 
completion of C or of C00. 
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