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We give here some "intrinsic" results about abstract linear Cauchy 
problems in Hubert space. I t is first shown that weak solutions are 
really strong solutions of another problem and this leads to a new 
type of uniqueness theorem for weak solutions. Then the operational 
nature of certain standard hypotheses in existence theory is ex­
hibited and an abstract existence theorem in linked operators is 
stated. The details will appear in [5]. 

1. Let H be a Hubert space and V(t) a measurable family of Hilbert 
spaces for Lebesgue measure (cf. Dixmier [7]) with V(i) C.H alge­
braically and topologically and dense in H. Let W — f®V(t)dt, O^t 
g r < o o with scalar product {{u1 v))=Jl((u(t),v(t)))tdt. For each 
££ [0 , T] let a(t,) denote a continuous sesquilinear form on 
V(t)XV(t) and let A{t)^L{V{t), V(f)) be the associated continuous 
linear operator defined by a(t, x, y) = ((A(t)x, y)) for x, yE:V{t). Sup­
pose further that the field of operators A(t) is measurable (cf. [7]) 
and \a(t, u, v)\ ûM\\u\\t\\v\\t with M independent of / for u, vÇzV(t). 
We shall consider functions u^W satisfying 

(u, v')dt + I a(t, u,v)dt + \ I (u, v)dt = I (ƒ, v)dt 
o J o J o Jo 

for all ^G W with v'(E.L2(H) and v(T) = 0 . Here ( , ) denotes the scalar 
product in H and all derivatives are taken in D'(H) (cf. [15]); 
f^L%(H) is supposed given. By the nature of differential problems 
of this type we can always add a X term as indicated with arbitrarily 
large X (cf. [2], [3], [l0]). We are dealing with the case ^(0) = 0 for 
convenience only. In supposing Re a(t, u, u)+\\ u\ 2^CJ|w||? for 
u£:V(t) Lions proves existence in [ l0] . Under more hypotheses 
uniqueness theorems are given by Lions in [10], [ l l ] . In the case that 
V(t) = V is constant and W is L2( V) the hypotheses already indicated 
are enough for existence and uniqueness (see Lions [10]—other proofs 
can be obtained by specializing Browder's more general nonlinear 
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results [2], [3] to the linear case and similar theorems under various 
hypotheses can be found in Kato and Tanabe [9], Kato [8], Poulsen 
[l3] , Sobolevskij [16], and in many other articles too numerous to list 
here). 

Now a subhilbert space V(t) of H as above can be described as the 
domain of a closed densely denned positive definite self adjoint 
"standard" operator Bll2(i) where Bll2(t) maps onto H with a con­
tinuous inverse. In fact B(t) =ÖL(/)~1 where 0: H'—>H is the canonical 
anti-isomorphism and L(t) is the Schwartz anti-kernel of V(t) rela­
tive to H (see Schwartz [14] for general notions and the author's 
paper [4] for proof). Here V(t) is provided with the Hilbert structure 
((Wf v))t = (Bli*(t)u, Bl>2{t)v). (See [4].) If V(t) has the graph Hilbert 
structure of an operator E(t) (closed and densely defined) then B(t) 
= ( 1 + E * ( 0 E ( 0 ) (see [4]). Next observe that if xEH, y£V(t) then 
y—>(x, 3;)// determines an antilinear form on V(t) which we write 
((Jx, y))t. Therefore (J31/2Jx, Bll2y) = (x1 y) and consequently J — B~l 

(we omit t occasionally for simplicity in writing). Now (1) can be re­
written in the form 

(2) - f (u,v')dt= f (&v))tdt 
J 0 ^ 0 

where t; = J(t)f(t)—\J(t)u(t)--A(t)u(t) is a function. 
Now in general u' will not be a function (cf. [9]) but we will show 

that (B~ll2u)f is a function and reduce the weak problem to a strong 
problem involving an additional term measuring the way in which 
the scalar product changes. If V(t) is constant this is related to con­
structions in [ l ] , [3]. I t is to be emphasized here that hypotheses of 
differentiability on B~ll2(t) can now be interpreted directly as smooth­
ness conditions on the way V(i) changes. Thus our formulation will be 
intrinsic in a certain sense. 

Let Dw= {(t> = B-1l2(f)\[/, \l/ED(H)} and assume B~^2 is strongly 
C1 in the sense that B~^2{t)x is C1 for xE.H with (B-1/**)' = (B""1'2)'* 
for (B-wyEHH) =L(H, H). Then by Banach-Steinhaus | |£ - 1 / 2 (0 | | 
S-M for 0 g / 5 ^ T and <j> will be C1 (C1 means continuously differenti­
a t e ) . Thus <t>ÇzDw is admissible as v in (2) (note </>'(£ W necessarily). 
Now writing (B-^2)' = i h 1 ' 2 for simplicity, </> = 5 " 1 ^ , we know <£' 
= J5-1 /2V/+^-1 /V. Then from (2) 

(3) - f (B-V2u, *')dt - f (B-V2u,xP)dt= f ( & * ) ) , « 
1/ 0 J 0 * 0 

since B~~112 will be self adjoint. This means 
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(4) ((B-ll2u)', *> - (B-^u, *) = (BU% $) 

where (,) means D(H), Df(H) conjugate linear duality and (B~~il2u)' 
means the distribution derivative. Hence in D'(H)(B~ll2u)' is a func­
tion and we have in L2(H) 

(5) (B-Wu)' - B-u*u + \Br"*u + Bl»Au = B-^f. 

THEOREM 1. Let A(t)£:L(V(t),V(t)) be a measurable family of 
operators associated with the continuous sesquilinear forms a(t, u, v) 
where \a{t, u, v)\ ^M||w||e||»||t, M constant, and let Bll2(t) be the 
standard operator f or V(t). Let u be a solution of the weak problem (1) 
and assume B~ll2(t) is strongly Cl as indicated. Then u is a solution of 
the strong problem (5) with u(0) = 0 . 

REMARK 1. As an example consider the case where a(£, uy v) 
= (E(t)u, E*(t)v) and say E{t) = F(t)112 as a most natural case. Sup­
pose for example tha t D(E(t)) CD(E*(t)) with | E*(t)x\2gc(| E(t)x\2 

+ |* | 2 ) for x ED(E(t)) and set V(t) = D(E(t)). Then B(t) = 1 
+E*(t)E(t) &nàa(tiu,v) = (BV2B-V2K*Eu,BV2u) whereK = E*B~1i2 

EL(H). Then A =B~^2K*E and in the event that uED(F) one has 
in fact Au=B~lFu and the term Bll2Au in (5) becomes B~ll2Fu. This 
is the situation when u is a strong solution of u'-\-F(t)u=f. 

2. Now we show that knowing how to write a weak problem as a 
strong solution of the type (5) leads to a new kind of uniqueness theo­
rem for weak solutions. We do not at tempt to compare hypotheses 
here with those of Lions [ l l ] since the formulation of our hypotheses 
is different; this will be examined in [5]. We remark however that 
the hypotheses are realistic. First, setting ƒ = 0 in (5), we take scalar 
products in H with B~ll2u to obtain 

(6) | B-v*u |2 + X | B-u*u |2 + Re (B^Au, B-"*u) 
2 dt 

- Re (B-V2u, B~l'2u) = 0. 

Now one need only make suitable hypotheses on the last two terms 
and these can be motivated by Remark 1. We will give details of this 
in [S]. For example, recalling that X may be assumed arbitrarily 
large, one has 

THEOREM 2. Let the hypotheses of Theorem 1 hold with Re(Au, u) 
^ _ 7 | 5 - i / 2 w | 2 and | (#-i /2W t B - I / « H ) | ^c\B-"2u\2 for u(t)£V(t). 
Then solutions of (1) are unique. 
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REMARK 2. The last condition holds for example if Ê~1I2B112 deter­
mines a bounded operator in H. We note that the condition on 
Re(Au, u) is not a straight monotonicity requirement since that in­
volves usually Re a(t, u, u) = Re(Bll2Au, Bll2u). 

3. We want to indicate briefly here some further results toward 
the solution of the problem Su = Lu+Au=f with L and A closed, 
densely defined, linear operators in a Hilbert space H (see [ó]). Thus 
for example (see [5] for details). 

THEOREM 3. Let A=Ai+A2 with A\ self adjoint, positive, and onto; 
D(A1)=D(A)CD(A2); \\A2u\\ ^ | | ^ | | +c2|Mî/2**|| for UGD(A1); L 
and A be closed, densely defined, and linear with L* accretive; and sup­
pose i R e ^ r ^ x , Rx)\ Sallx^+CillAr^Hll2 for x£D(L*) where 
R = L*A1~

1/2—Ar'il2L* and it is assumed that x £ D ( L * ) implies 
^4i~1/2xGJ9(L*). Assume a + j 8 < l and that rj is chosen small enough so 
that 7 = 1— a—)3 — c2rj/2 > 0. Then for k = Ci+C22rj the operator L+A +k 
maps onto H. 

REMARK 3. This theorem is in a sense copied from a technique of 
Lions [ l0] . However there are several important differences. First, 
as indicated partially in [6], we show monotonicity can be used, and, 
in another version we reveal what the usual hypotheses on — R 
^(d/dfiFxit)-1 really mean (when A arises from F(t) = Fx(t) + F2(t)) ; 
note that JR is related to this operator by £ = ^ i - 1 / 2 # + i L 4 r 1 / 2 . Also 
it should be pointed out here how much of the work A does; monoto­
nicity of L is not assumed. Theorem 1 of [6, part I I ] , can also be gen­
eralized out of the tensor product situation (see [5]). 
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