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1. I. M. Vinogradov and A. G. Postnikov, in their one-hour report 
on Recent developments in analytic number theory a t the International 
Congress of Mathematicians (Moscow, 1966) have referred to a re
cent result of A. A. Judin on the lattice-point problem for a random 
circle. If (a, /3) is an arbitrary point in the plane, and A(x; a, ]8) de
notes the number of lattice-points inside and on the circumference 
of a circle with (a, /3) as centre and x1/2 as radius, then Judin's result, 
as stated in the above-mentioned report, is that 

| A(x; a, 0) — TX\ 
lim sup > c > 0, 

and the proof, according to the report, is by the application of argu
ments from the theory of almost periodic functions. This is of interest 
in view of the known result [3] that 

A(x\ a, p) - TX = 0(#1/4+e), e > 0, 

for almost all points (a, j3). 
I t is our object to show that the following result, hence also 

Judin's, is a direct consequence of a theorem of ours on the average 
order of arithmetical functions: 

A(x; a, £) — TX 
lim sup > 0, 

s-^oo X114, 

A(x; a, 0) — irx 
lim inf < 0. 

This result is true not only in the plane, but in k dimensions, for 
fe^2. Instead of A(x; a> /3), one can also consider its higher averages 
of order p ^ O , the proof being the same. 

2. THEOREM. If (ai, • • • , au) is an arbitrary point in k-space, k*z2, 
and A(x; cei, • • • , a*.) denotes the number of lattice-points inside and 
on a sphere with centre (ai, • • • , <*&), and radius x112, then 

[A(x; ai, • • • , a*) - **W*/T(k/2 + 1)] - O*^*-1»4), 

as x—* oo. 
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PROOF, (i) Let ai, • • • , aie be given real numbers, not all being 
integers at the same time. Let (m) denote integers. Let (Xr) be the 
sequence of real numbers {(ni—ai)2+ • • • +(tik—ak)2} arranged in 
increasing order of magnitude. Define 

(n i—ai) -f •••-f-(njfc—otfc) ~»Xr 

Consider the Dirichlet series 

*(*) = Z) — > s = a + it, 
r-»l A r 

oo •* 

- E ••• E {(«1 — ai)2 + • • • + (»* — «A;)2}* 

This converges absolutely îor<r>k/21 and satisfies a functional equa
tion given by 

(2.1) *~r(*)*(5) = 7T-*/2r ( y - ^ ( y - * ) , 

where ^ is represented by the Dirichlet series 

Hs) = E ^ 
r~l f 

_ °° e x p (liciiniOLi + • • • + nk<xk)) 

» r»-oo; (ni. • • • ,njfc)^ (0,0. • • • ,0) 

where 

br = 2 X 2
 e x P (2ri(niai + • • • + ^a^)) . 

Equation (2.1) can be proved directly in the same way as the func
tional equation of Riemann's zeta-function. If 

00 

0(«> J) = 12 ' # • X) e xP (—[(»i - «i)2 + • • • + ( » * - a*)2]*7)> 
n r«—oo 

for Re y > 0, then 

*(«, y) = r* / 2^i(«, i /y) , 

where 

0i(«> y) 

= 2 • • • X) e x P (2irt(wi«i + • • • + nkotk) - TT(«I + • • • + w*);y). 
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If we denote 
Q*(u> y) = Oi(a, y) - 1, 

then, for <r>k/2, we have 

(2.2) " 
/•* 1 

+ I yhl2-*~ldi(<x, y)dy + —-
J i s — f k 

and 

/

oo 

y)^y 
(2.3) 

r™ i 
+ I y*/*-*-i0(a, y)dy 

J ! s 
These two relations show that <t>(s) and i^(s) are meromorphic func
tions in the whole s-plane, with <£ having a simple pole at s = fe/2 with 
residue 7rkl2/T(k/2). Further <f> and \[/ satisfy equation (2.1). Not all 
the coefficients (bn) are zero. Hence Theorem 3.2 of [2] is applicable, 
with p = 0, Öo(x)-7r^2x^2/r(fe/2 + l ) , and 0 = ( f e - l ) /4 , giving what 
we want. 

(ii) If a±9 • • • , ah are all integers, then <j>(s) =^(5), and we have 
Epstein's zeta-function, which is known to satisfy (2.1). The result 
is again obvious. 

REMARK 1. If one starts with a positive-definite quadratic form 
Q in ^-variables, with real coefficients, where k^ 2, one considers the 
corresponding function 

M*\Q> «) = IL 1> 

and obtains the result 

A(x; Q, a) - wk^x^/T(k/2 + 1) | Q\"* = Q±(*»-l>/<), 

as x—> 00, where | (?| is the determinant of Q. 
REMARK 2. The function A(x\ au • • • , c^) is integrable and multi-

periodic in the a's, with period 1, and its Fourier expansion is given 
by 

A(x; «i, • • • , au) ~ cix?12 + dxhl* S • • • 5^ 

exp (2T»(OEI»I + \- aknk))Jtn(2irxu\ni + h «I)1 '8) 

( » ? + • • • + «!)*" 
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If one integrates the series on the right, with respect to x, p times, 
where p is a sufficiently large integer, one obtains an absolutely con
vergent series, which is the Fourier series of Ap(x; ai, • • • , a*), the 
pth integral, with respect to x, of A(x; ai, • • • , «&), and is therefore 
equal to it. Thus one obtains an identity of the form 

r(p) 
I A(l',ai, • • - ,«*) (* -t)"-ldt 

J 0 

.«,,», + ^ „ j ; . . . £ W W . + • • • + « > • ) 
^ ^ (n\ + • • • + nf)*'4+>/2 

•exp (2iri{aini + • • • + o^*)). 

It is known that this is equivalent to a functional equation of the 
form (2.1). (See Lemma 5 of [l].) 
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