MULTIPLICATION IN GROTHENDIECK RINGS OF INTEGRAL GROUP RINGS

BY D. L. STANCL
Communicated by I. Reiner, June 24, 1966

1. Introduction. Let G be a finite group, Z the ring of rational integers, and form the Grothendieck ring $K^{0}(Z G)$ of the integral group ring $Z G$. Swan [4] has described multiplication in $K^{0}(Z G)$ when G is cyclic of prime power order. The purpose of this note is to present results which describe multiplication in $K^{0}(Z G)$ when G is cyclic or elementary abelian. Full details will appear elsewhere.

Let Q denote the rational field, and recall that the elements of $K^{0}(Q G)$ are Z-linear combinations of symbols $\left[M^{*}\right]$, where M^{*} ranges over all finitely-generated left $Q G$-modules, and similarly for $K^{0}(Z G)$. We define a ring epimorphism $\theta: K^{0}(Z G) \rightarrow K^{0}(Q G)$ by $\theta[M]$ $=\left[Q \otimes_{z} M\right]$, and call any linear mapping $f: K^{0}(Q G) \rightarrow K^{0}(Z G)$ such that $\theta f=1$ a lifting $m a p$ for $K^{0}(Z G)$. Since the Jordan-Hölder Theorem holds for $Q G$-modules, $K^{0}(Q G)$ is the free abelian group with basis $\left\{\left[M_{i}^{*}\right]: 1 \leqq i \leqq m\right\}$, where $\left\{M_{i}^{*}: 1 \leqq i \leqq m\right\}$ is a full set of nonisomorphic irreducible $Q G$-modules. Swan [4] has shown that to describe multiplication in $K^{0}(Z G)$ it suffices to describe the products $f\left[M_{i}^{*}\right] \cdot f\left[M_{j}^{*}\right]$, for $1 \leqq i, j \leqq m$, and $f\left[M_{i}^{*}\right] x$, for $1 \leqq i \leqq m$ and $x \in \operatorname{ker} \theta$.
2. Statement of results. Let G be cyclic of order n with generator g. For each s dividing n, ζ_{s} will denote a primitive s th root of unity, and Z_{s} will denote the $Z G$-module $Z\left[\zeta_{s}\right.$] on which g acts as ζ_{s}. Similarly, Q_{s} will denote the $Q G$-module $Q\left(\zeta_{s}\right)$. Then $K^{0}(Q G)$ is the free abelian group with basis $\left\{\left[Q_{s}\right]: s \mid n\right\}$, and $f: K^{0}(Q G) \rightarrow K^{0}(Z G)$ by $f\left[Q_{s}\right]=\left[Z_{s}\right]$ is a lifting map. Swan [4] has shown that f is a ring homomorphism. Also, for each s dividing n, G_{s} will denote the quotient group of G of order s, and if $t \mid s, N_{s / t}$ will denote the norm from Q_{s} to Q_{t}. By the results of Heller and Reiner [2],

$$
\operatorname{ker} \theta=\left\{\sum_{s \mid n}\left(\left[A_{s}\right]-\left[Z_{s}\right]\right): A_{s}=Z_{s} \text {-ideal in } Q_{s}\right\}
$$

Theorem 1. Multiplication in $K^{0}(Z G)$ is given by the formula

$$
\left[Z G_{r}\right]\left(\left[A_{s}\right]-\left[Z_{s}\right]\right)=\sum_{d}\left(\left[N_{s / s^{\prime}}\left(A_{s}\right) Z_{d}\right]-\left[Z_{d}\right]\right),
$$

for all r, s dividing n, where $s^{\prime}=s /(r, s)$ and d ranges over all divisors of $[r, s]$ such that $\left([r, s] / d, s^{\prime}\right)=1$.

Theorem 2. If G is an elementary abelian group, multiplication in $K^{0}(Z G)$ can be explicitly determined.

We remark that it is possible to give formulas which describe multiplication in $K^{0}(Z G)$ when G is elementary abelian. These formulas will not be included here.
3. Proof of Theorem 1. We first suppose that $r=p^{a}$, for some prime p and nonnegative integer a, and write $s=p^{b_{t}},(p, t)=1$. If $a=0$ or $b=0$, the theorem is trivial. Let $\hat{Z}=Z_{s} / A_{s}$ and for each t dividing s, let $\hat{Z}\left\langle\bar{\zeta}_{t}\right\rangle$ denote the $Z G$-module \hat{Z} on which g acts as ζ_{t} reduced modulo A_{8}. It suffices to find $M=Z G_{p^{a}} \otimes_{z} \hat{Z}$. Since $Z G_{p^{a}} \cong Z[x] /\left(x^{p^{a}}-1\right)$, $M \cong \hat{Z}[x] /\left(x^{p^{a}}-1\right)$. If $a \leqq b$, then in $\hat{Z}[x], x^{p^{a}}-1=\prod_{k}\left(x-\zeta_{p}^{a}\right)$, $1 \leqq k \leqq p^{a}$, and thus $M \cong \sum_{k} \hat{Z}\left\langle\bar{\zeta}_{p}^{b_{i}} \xi_{p}^{\xi_{a}}\right\rangle$. A calculation with norms now yields the desired result. If $a>b$, then $x^{p a}-1$ factors in $\hat{Z}[x]$ as follows: $x^{p a}-1=\prod_{k}\left(x-\bar{\zeta}_{p^{b}}^{k}\right) \prod_{i, j}\left(x^{p^{i-b}}-\bar{\zeta}_{p^{b}}^{J}\right)$, where $1 \leqq k \leqq p^{b}, b+1$ $\leqq i \leqq a$, and $1 \leqq j \leqq p^{b}$ with $(p, j)=1$. Therefore
where $\left(Z_{p^{i} t} / A_{s} Z_{p^{i} t}\right)\left\langle\zeta_{p}^{b_{t}} \zeta_{p}{ }^{j_{i}}\right\rangle$ denotes the $Z G$-module $Z_{p^{i} t} / A_{s} Z_{p^{i} t}$ on which g acts as $\bar{\zeta}_{p}^{b_{i}} \xi_{p}^{j_{i}}$. Again, a calculation with norms will yield the desired result. This proves the theorem for the case $r=p^{a}$. The general case follows by the use of induction on the number of distinct prime divisors of r.
4. Proof of Theorem 2. In order to prove Theorem 2, we need several lemmas.

Lemma 1. Let G be an abelian group, F an algebraic number field which is a splitting field for G, and R the ring of algebraic integers of F. Then multiplication in $K^{0}(R G)$ can be explicitly determined.

Let G be an elementary abelian group and write $G=G_{1} \times \cdots \times G_{k}$, where G_{i} is cyclic of order p with generator g_{i}, for $1 \leqq i \leqq k$. Let ζ be a primitive p th root of unity, $F=Q(\zeta), R=Z[\zeta]$, and denote by $F\left\langle a_{1}, \cdots, a_{k}\right\rangle$ the $F G$-module F on which g_{i} acts as $\zeta^{a_{4}}$, where $1 \leqq a_{i} \leqq p$ for $1 \leqq i \leqq k$. Similarly, if A is any R-ideal in $F, A\left\langle a_{1}, \cdots, a_{k}\right\rangle$ will denote the $R G$-module A on which g_{i} acts as $\zeta^{a_{i}}$. Note that, by restriction of operators, $F\left\langle a_{1}, \cdots, a_{k}\right\rangle$ and $A\left\langle a_{1}, \cdots, a_{k}\right\rangle$ are $Q G$ and $Z G$-modules, respectively. It is easy to prove that the $Q G$ modules of form $F\left\langle p, \cdots, p, 1, a_{j+1}, \cdots, a_{k}\right\rangle$, where $1 \leqq j \leqq k$, together with the trivial module Q, form a full set of nonisomorphic irreducible $Q G$-modules.

Define $\psi: K^{0}(Z G) \rightarrow K^{0}(R G)$ by $\psi[Y]=\left[R \otimes_{z} Y\right]$, where $R \otimes_{z} Y$ is an $R G$-module with action of R given by $r^{\prime}(r \otimes y)=r^{\prime} r \otimes y$, for all
$r^{\prime} \in R$, and action of G given by $g(r \otimes y)=r \otimes g y$, for all $g \in G$. Similarly, define $\eta: K^{0}(Q G) \rightarrow K^{0}(F G)$ by $\eta\left[Y^{*}\right]=\left[F \otimes_{Q} Y^{*}\right]$.

Lemma $2 . \psi$ and η are ring homomorphisms and the following diagram commutes and is exact:

\uparrow
0
Let $\Phi_{p}(x)$ denote the cyclotomic polynomial of order p. If we apply ψ to $\left[A\left\langle p, \cdots, p, 1, a_{j+1}, \cdots, a_{k}\right\rangle\right] \in K^{0}(Z G)$, we note that $\Phi_{p}\left(g_{j}\right)$ annihilates $R \otimes_{z} A\left\langle p, \cdots, p, 1, a_{j+1}, \cdots, a_{k}\right\rangle$. Since $\Phi_{p}(x)$ splits into linear factors in $R[x]$, this gives us a composition series for $R \otimes_{z} A\left\langle p, \cdots, p, 1, a_{j+1}, \cdots, a_{k}\right\rangle$. If we denote by $A^{(t)}$ the ideal conjugate to A under the Q-automorphism of F which takes ζ into ζ^{t}, we thus obtain

Lemma 3. $\psi\left[A\left\langle p, \cdots, p, 1, a_{j+1}, \cdots, a_{k}\right\rangle\right]=\sum_{t}\left[A^{(t)}\langle p, \cdots\right.$, $\left.\left.p, t, t a_{j+1}, \cdots, t a_{k}\right\rangle\right]$, where $1 \leqq t \leqq p-1$.

We now use the formulas for $\operatorname{ker} \theta_{z}$ and $\operatorname{ker} \theta_{R}$ obtained by Heller and Reiner [2], and our formula for $\psi\left[A\left\langle p, \cdots, p, 1, a_{j+1}, \cdots, a_{k}\right\rangle\right]$, to show that $\psi: \operatorname{ker} \theta_{Z} \rightarrow \operatorname{ker} \theta_{R}$ is monic. Lemma 2 then implies that $\psi: K^{0}(Z G) \rightarrow K^{0}(R G)$ is monic. Now define $f_{R}: K^{0}(F G) \rightarrow K^{0}(R G)$ by $f_{R}\left[F\left\langle a_{1}, \cdots, a_{k}\right\rangle\right]=\left[R\left\langle a_{1}, \cdots, a_{k}\right\rangle\right]$. It is clear that f_{R} is a lifting map for $K^{0}(R G)$, and it is easy to show that f_{R} is a ring homomorphism. Since ψ is monic, we may define $f_{z}=\psi^{-1} f_{R} \eta$. Then f_{z} is a lifting map for $K^{0}(Z G)$ and is a ring homomorphism. Finally, since F is a splitting field for G, multiplication in $K^{0}(R G)$ is known by Lemma 1, and hence multiplication in $K^{0}(Z G)$ can be explicitly determined by the use of the monomorphism ψ. This completes the proof of Theorem 2.

Bibliography

1. A. Heller and I. Reiner, Grothendieck groups of orders in semisimple algebras, Trans. Amer. Math. Soc. 112 (1964), 344-355.
2. -, Grothendieck groups of integral group rings, Illinois J. Math. 9 (1965), 349-359.
3. R. G. Swan, Induced representations and projective modules, Ann. of Math. (2), 71 (1960), 552-578.
4. ——, The Grothendieck ring of a finite group, Topology 2 (1963), 85-110.

University of Illinois

