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Let XN for iV = 0, ± 1 , • • • be independent random variables 
with finite first absolute moments; let AN~ {##,&: fe = 0 , ± l , • • • }; 
let lliltflloo^sup* \aN,k\ and ||-4jyr||p== []£* |ai\r,fc| p ] 1 / p for lg£<<*>; 
let SN— ^kaN,k{Xk—EXk)\ and let p and q be numbers in [l, <*>] 
satisfying 1 /p + 1 /q = 1. 

THEOREM. Suppose there exist positive constants M% yt and l£*pS2 
such that for 0 <x < oo and all values of k 

J» CO 

M exp (~yP)it. 
X 

Suppose 11-4̂ 112 and ||-4i^||« are finite f or all N. Then 

TN = lim X) VN,k(Xk — EXk) 
« - • - » ; / 3 - > o o kssa 

exists as an almost sure limit for each N and there exist positive con
stants C\ and Ci such that for every €>0 

P\TS ï ,| s «p [-mi„ {c(p^)', < « ) * } ] • 
The constants C\ and C2 which are obtained depend only on M,y, and p. 
They do not depend in any other way on the distribution of the Xks and 
they do not depend on the coefficient sequences AN-

When p = 1 the condition (1) is equivalent to the existence of con
stants r > 0 and O O such that E exp(tXk) ^exp(D 2 ) for all k and 
all | ;| < T; when Kp ^ 2 it is equivalent to the existence of a con
stant O O such that E exp(tXk) ^exp[C(t2+1 j | «)] for all k and t. 

If p = 1 and aNtk = \/N for k = 1, • • • , N, 

= 0 otherwise, 
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then this theorem reduces to the well known result (see [ l ] and [2]) 
giving exponential convergence rates in the law of large numbers; 
that is, the theorem guarantees 0 gp« < 1 such that P { 7V ê €} ^ (p()

N 

for all N. 
If p = l and | | ; l jr | | iâAf < «> for all N, then since 11-4^112â||^3r||i 

X||-4JV||OO we see that there exists O g p € < l such that P{TN^^} 

â [p«]1/IUjvllo°. The assumption made here about the distributions of 
the Xk's is equivalent to that made in (1) of Theorem 1 of [3]. Thus 
we obtain Theorem 1 of [3] as a corollary to the theorem given above. 
We actually obtain a stronger result than Theorem 1 of [3] since 
it is not necessary for ||-4#||i to even be finite for our theorem to hold. 

If p = 2, then | | ^ | | 2 = | M 4 « and we obtain P{TN^e} g [ p * ] 1 " 1 ^ 
for some 0 ^ p « < l . This is essentially Chow's Lemma 2 in [4], We 
can obtain generalized versions of his Theorems 1 and 2 from our 
theorem. 

Note that no improvement can be obtained by taking p>2, and 
in fact not even by assuming a uniform bound on the Xk's. The 
Central Limit Theorem seems to provide a bound on the rate of con
vergence obtained in this theorem. 

A continuous case analogue similar to the theorem of [5] and 
proofs will be published elsewhere. 
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