ORLICZ SPACES OF FINITELY ADDITIVE SET FUNCTIONS, LINEAR OPERATORS, AND MARTINGALES¹

BY J. J. UHL

Communicated by A. Zygmund, July 19, 1966

The purpose of this note is to announce some properties and applications of Orlicz spaces of finitely additive set functions, the V^{Φ} spaces. The V^{Φ} spaces are natural generalizations of the V^{p} spaces (Bochner [2] and Leader [6]).

1. The $V^{\Phi}(\mathfrak{X})$ spaces. Throughout this note Ω is a point set, Σ a field of subsets of Ω , μ a finitely additive extended real valued nonnegative set function defined on Σ ; and $\Sigma_0 \subset \Sigma$ is the ring of sets of finite μ -measure. A partition π is a finite disjoint collection $\{E_n\} \subset \Sigma_0$. The partitions are partially ordered by defining $\pi_1 \leq \pi_2$ whenever each $E_n \in \pi_1$ is a union of members of π_2 . \mathfrak{X} and \mathfrak{Y} are Banach (or B-) spaces with conjugate spaces \mathfrak{X}^* and \mathfrak{Y}^* respectively. Φ is a (nontrivial) Young's function with complementary function Ψ .

DEFINITION. $V^{\Phi}(\Omega, \Sigma, \mu, \mathfrak{X}) = (V^{\Phi}(\mathfrak{X}))$ consists of all finitely additive μ -continuous \mathfrak{X} -valued set functions F on Σ_0 such that for some k > 0,

$$I_{\Phi}(F/k) = \sup_{\pi} \sum_{\pi} \Phi\left(\frac{||F(E_n)||}{k\mu(E_n)}\right) \mu(E_n) \leq 1,$$

where the supremum is taken over all partitions $\pi = \{E_n\}$ and the convention 0/0=0 is observed.

 $V^{\Phi}(\mathfrak{X})$ becomes a *B*-space under each of the equivalent norms

$$N_{\Phi}(F) = \inf\{k > 0: I_{\Phi}(F/k) \leq 1\}$$

or

$$||F||_{\Phi} = \sup \left\{ \sup_{\pi} \sum_{\pi} \frac{||F(E_{v})|| ||G(E_{v})||}{\mu(E_{v})} : G \in V^{\Psi}(\mathfrak{X}^{*}), N_{\Psi}(G) \leq 1 \right\}.$$

Using the integration procedure of [4, Chap. III], one can define the (possibly incomplete) Orlicz spaces $L^{\Phi}(\Omega, \Sigma, \mu, \mathfrak{X}) (= L^{\Phi}(\mathfrak{X}))$ of totally μ -measurable \mathfrak{X} valued functions f satisfying $\int_{\Omega} \Phi(||f||/k) d\mu \leq 1$ for some k > 0. $L^{\Phi}(\mathfrak{X})$ becomes a normed linear space under either of the two equivalent norms $N_{\Phi}(f) = \inf\{k > 0: \int_{\Omega} \Phi(||f||/k) d\mu \leq 1\}$ or, if

¹ The results announced here are contained in the author's doctoral thesis written under the guidance of Professor M. M. Rao at Carnegie Institute of Technology.

ORLICZ SPACES

 μ has the finite subset property, $\text{FSP}(A \in \Sigma, \mu(A) = \infty$, only if there is $B \in \Sigma$, $B \subset A$, $0 < \mu(B) < \infty$), $||f||_{\Phi} = \sup \{ \int_{\Omega} ||f|| ||g|| d\mu$, $g \in L^{\Psi}(\mathfrak{X}^*)$, $N_{\Psi}(g) \leq 1 \}$. $M^{\Phi}(\mathfrak{X}) \subset L^{\Phi}(\mathfrak{X})$ is the closed subspace determined by the μ -simple functions. If Φ satisfies the Δ_2 condition $(\Phi(2x) \leq K^{\Phi}(x))$, $M^{\Phi}(\mathfrak{X}) = L^{\Phi}(\mathfrak{X})$. $L^{\Phi}(\mathfrak{X})$ and $V^{\Phi}(\mathfrak{X})$ are related by

THEOREM 1. Let Φ be continuous, for $f \in L^{\Phi}(\mathfrak{X})$, define λf by $\lambda f(E) = \int_{E} f d\mu$, $E \in \Sigma_{0}$. The mapping λ maps $L^{\Phi}(\mathfrak{X})$ linearly into $V^{\Phi}(\mathfrak{X})$ and $N_{\Phi}(f) = N_{\Phi}(\lambda f)$. If μ has FSP and $f \in M^{\Phi}(\mathfrak{X})$, $||f||_{\Phi} = ||\lambda f||_{\Phi}$.

2. The structure of $V^{\Phi}(\mathfrak{X})$. When $\Phi(x) = |x|$, the corresponding $V^{\Phi}(\mathfrak{X})$ is denoted by $V^{1}(\mathfrak{X})$ and is endowed with the variation norm $\mathfrak{v}(\cdot)$. The study of the structure of $V^{\Phi}(\mathfrak{X})$ rests upon the following generalization of the Radon-Nikodym-Bochner theorem [4, IV.9].

THEOREM 2. Let $\mu(\Omega) < \infty$ and $F \in V^1(\mathfrak{X})$. If

$$\left\{ \frac{F(E)}{\mu(E)} \colon \left| \left| \frac{F(E)}{\mu(E)} \right| \right| \leq n, E \in \Phi \right\}$$

is weakly sequentially compact for each positive integer n, then for each $\epsilon > 0$, there exists a μ -simple function f_{ϵ} such that $v(F - \lambda f_{\epsilon}) < \epsilon$ where λ is the injection of Theorem 1.

For $F \in V^{\Phi}(\mathfrak{X})$ and each partition $\pi = \{E_n\}$, F_{π} is defined by

$$F_{\pi} = \sum_{\pi} \frac{F(E_n)}{\mu(E_n)} \mu.$$

 E_n where $\mu \cdot E_n$ is the set function defined by $\mu \cdot E_n(E) = \mu(E_n \cap E)$, $E \in \Sigma_0$. $S^{\Phi}(\mathfrak{X})$ denotes the closed subspace of $V^{\Phi}(\mathfrak{X})$ of functions satisfying $\lim_{\pi} N_{\Phi}(F - F_{\pi}) = 0$ where the limit is taken in the Moore-Smith sense.

THEOREM 3. If Φ obeys the Δ_2 condition and \mathfrak{X} is reflexive $S^{\Phi}(\mathfrak{X}) = V^{\Phi}(\mathfrak{X})$.

3. Linear operators on $V^{\Phi}(\mathfrak{X})$ and $L^{\Phi}(\mathfrak{X})$. $B(\mathfrak{X}, \mathfrak{Y})$ denotes the *B*-space of bounded linear operators from \mathfrak{X} to \mathfrak{Y} .

DEFINITION. $W^{\Phi}(\Omega, \Sigma, \mu, B(\mathfrak{X}, \mathfrak{Y})) = (W^{\Phi}(B(\mathfrak{X}, \mathfrak{Y}))$ consists of all finitely additive μ -continuous $B(\mathfrak{X}, \mathfrak{Y})$ -valued set functions H defined on Σ_0 and satisfying (i) $y^*H \in V^{\Phi}(\mathfrak{X}^*)$ for all $y^* \in \mathfrak{Y}^*$ and (ii) $\sup_{\|y^*\|\leq 1} N_{\Phi}(y^*H) = \|H\|_{W^{\Phi}} < \infty$.

THEOREM 4. Let Φ be continuous. Then

(a) to each $h \in B(S^{\Phi}(\mathfrak{X}), \mathfrak{Y})$ there corresponds a unique $H \in W^{\Psi}(B(\mathfrak{X}, \mathfrak{Y}))$ such that

$$h(F) = \lim_{\pi} \sum_{\pi} \frac{H(E_n)[F(E_n)]}{\mu(E_n)}, \qquad F \in S^{\Phi}(\mathfrak{X}).$$

(b) If $S^{\Phi}(\mathfrak{X})$ is normed with $\|\cdot\|_{\Phi}$, the correspondence $h \rightarrow H$ maps $B(S^{\Phi}(\mathfrak{X}), \mathfrak{Y})$ isometrically isomorphically onto $W^{\Psi}(B(\mathfrak{X}, \mathfrak{Y}))$.

Since the injection λ of Theorem 1 maps $M^{\Phi}(\mathfrak{X})$ onto a dense subset of $S^{\Phi}(\mathfrak{X})$, it follows that $B(M^{\Phi}(\mathfrak{X}), \mathfrak{Y})$ is equivalent to $W^{\Psi}(B(\mathfrak{X}, \mathfrak{Y}))$ with the representation of $h \in B(M^{\Phi}(\mathfrak{X}), \mathfrak{Y})$ taking the form

$$h(f) = \lim_{\pi} \sum_{\pi} \frac{H(E_n) \left[\int_{E_n} f d\mu \right]}{\mu(E_n)}, \quad f \in M^{\Phi}(\mathfrak{X}), \ H \in W^{\Psi}(B(\mathfrak{X}, \mathfrak{Y})).$$

4. Martingales. Here generalizations of the classical conditional expectation operator and martingales to the $V^{\Phi}(\mathfrak{X})$ setting are given.

DEFINITION. Let Φ obey the Δ_2 -condition and B be a subfield of Σ . For $F \in S^{\Phi}(\mathfrak{X})$, $P_B(F)$ is defined by $P_B(F) = \lim_{\pi_B} F_{\pi_B}$ where the limit is taken in the $V^{\Phi}(\mathfrak{X})$ topology through all partitions $\pi_B \subset B$.

 P_B and E^B , the usual conditional expectation operator [10] are intimately related. In fact if Σ is a σ -field, B is a sub σ -field of Σ and μ is countably additive and finite on Σ , then $\lambda E^B(f) = P_B(\lambda f)$ for all $f \in L^1(\mathfrak{X})$ where λ is the injection of $L^1(\mathfrak{X})$ into $V^1(\mathfrak{X})$ of Theorem 1.

DEFINITION. Let Φ obey the Δ_2 -condition and $\{B_{\tau}, \tau \in T\}$ be an increasing net of subfields of Σ . $\{F_{\tau}, B_{\tau}, \tau \in T\}$ is an $S^{\Phi}(\mathfrak{X})$ -martingale if $P_{B_{\tau_1}}(F_{\tau_2}) = F_{\tau_1}$ for $\tau_2 \ge \tau_1$.

Typical of the class of mean martingale convergence theorems which can be proved is

THEOREM 5. Let \mathfrak{X} be reflexive, Φ obey the Δ_2 -condition and Ψ be continuous. If $\{F_{\tau}, B_{\tau}, \tau \in T\}$ is an $S^{\Phi}(\mathfrak{X})$ -martingale, then the net $\{F_{\tau}, \tau \in T\}$ converges in $N_{\Phi}(\cdot)$ norm if and only if there exists $P, 0 < P < \infty$ such that $N_{\Phi}(F_{\tau}) \leq P, \tau \in T$.

The following corollary which extends [3, Theorem 3] is immediate from the properties of λ .

COROLLARY 7. Let Σ be a σ -field and μ be countably additive and finite on Σ . If Φ obeys the Δ_2 -condition and Ψ is continuous, a martingale $\{f_{\tau}, B_{\tau}, \tau \in T\}$ in $L^{\Phi}(\mathfrak{X})$ converges in $L^{\Phi}(\mathfrak{X})$ norm if and only if there exists $P, 0 < P < \infty$ such that $N_{\Phi}(f_{\tau}) \leq P, \tau \in T$.

References

1. W. M. Bogdanowicz, Integral representation of linear continuous operators from the space of Lebesgue-Bochner summable functions into any Banach space, Proc. Nat. Acad. Sci. U. S. A. 54 (1965), 351-353. 2. S. Bochner, Additive set functions on groups, Ann. of Math. 40 (1939), 769-799.

3. S. D. Chatterji, A note on the convergence of Banach-space valued martingales, Math. Ann. 153 (1964), 142-149.

4. N. Dunford and J. T. Schwartz, *Linear operators*, Part I, Interscience, New York, 1958.

5. K. Krickeberg and C. Pauc, *Martingales et derivation*, Bull. Soc. Math. France 91 (1965), 455-544.

6. S. Leader, The theory of L^p spaces for finitely additive set functions, Ann. of Math. 58 (1953), 528-543.

7. R. S. Phillips, On weakly compact subsets of a Banach space, Amer. J. Math. 65 (1943), 108-136.

8. — , On linear transformations, Trans. Amer. Math. Soc. 2 (1940), 516-541.

9. M. M. Rao, Linear functionals on Orlicz spaces, Nieuw Arch. Wisk. 12 (1964), 77-98.

10. F. S. Scalora, Abstract martingale convergence theorems, Pacific J. Math. 11 (1961), 347-374.

11. A. Zygmund, Trigonometric series, 2nd ed., Cambridge Univ. Press, New York, 1959.

CARNEGIE INSTITUTE OF TECHNOLOGY