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1. Introduction, Recently, detailed studies have been undertaken 
relating to the solutions and expansions of solutions of the initial 
value problem 

(a) Ufa t) = AMC/(r, /), r > 0, t > 0, 

(b) I 7 ( r , 0 ) - * ( r ) 

with A M = ^ + [ ( M ~ l)/r]Dr. Results have been obtained when <f>(r) is 
entire of growth (1, a) in r2 [ l ] , [3], [4] and these have been ex
tended to the L2 theory in [3]. In this note, we state some results on 
the structures of solutions of (1) when the data function <£(r) has a 
pole a t r = 0 but is otherwise entire. These structures are defined in 
terms of convolution integrals and the proofs are based on the La
place transform formulation [2] of solutions of (1) and the expansion 
theory referred to above. The details of the proofs will appear in a 
forthcoming paper that will also discuss logarithmic singularities. 

We denote by ?>(r, t; <!>(/)) the solution of (1) defined by 

J o 

with 

Kfa £; /) « — r^'2^2
 exp [-(r« + ^/^I^M/lt), 

(See [ l ] , [4].) The abbreviation a = r2/16t2 will be used in the state
ment of results. 

2. Main results. Our first theorem relates to functions 4>{r) that 
are odd while the remaining results relate strictly to functions with 
poles. 

THEOREM 1. Let <£(r) =n[/(r) in which \[/(r) is an entire function of r2 

of growth (1, cr). For O^Kl/ia and ju>2, 
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(2) « 
r2-* exp [~r2/4t] 

1/2/4A5/2-M 2(40 J 0 

THEOREM 2. i ^ <j>(r)=r2~*-"2ct$(r) with 0 ^ a < l / 2 awd ^(r) <m «*-
tire function of r2 of growth (1, er), ifyr 0 g £ < l / 4 ( r awd JU>2 

rOi/2 + a - 1) 
(3) 

*J 0 

Observe that the choice a = 0 in Theorem 2 corresponds to the case 
in which the multiplier of \l/(r) is precisely the potential function for 
the Laplacian operator AM. This theorem shows that the pole can be 
more badly behaved than the potential function. In fact, the following 
theorem shows that the pole can be as badly behaved as r^+€ for 
arbitrary e > 0 and still give rise to a classical solution. 

THEOREM 3. Let <j>(r) « r ^ - * « { i l +r ty ( r )} in which a is close to but 
less than 1, \x/2-\-a> 2, A is a constant, and \{/(r) is an entire function of 
r2 of growth (1, a). For 0£t<l/4a, 

r2"» exp [~r2/4/] 
V ' (40*-"* 

( A(uy-a ra 

lrut/2+a—l; «/o 
^(4/)1-« /•• (4/)2~a 

r ( M / 2 + a - l ) J 0 r ( M / 2 + a ~ 2 ) 

I t follows, from the change of valuables % = a(r, that 

lim U>»(r,*; 0) 
M);i>0 

exists in all of the above theorems. This simply states that the pole 
in the data function dissipates from the solution function. 

Finally, as a corollary to Theorem 2 where a = 0, we have the spe
cial result: 

COROLLARY 2.1. Let n = 2mbe an even integer with m ^ 2 . Then 
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4-2m 
U2m(r, t; r2~2m+2i)==:f2-2m i?y (r> /) + ( _ ! ) ƒ + ! e X p [ - r 2 / 4 * ] 

(5) 
••=»-> ( f » - 2 - * ) I 

* S ' ,» ' , r ,(1-*ffc)(4/)^»> 0 ^ i ^ m ~ 2 . 
jbo.0 k\{m—2—j — k)\ 

In this, i?*-M(r, / ) - i ! (40 ? XJ 1 - M / 2 ) ( - r 2 /^ ) with L)(x) the generalized 
Laguerre polynomial of degree j and index v. In the case that ju. is 
even with /x ̂  4, we can divide the data into the pole type terms (finite 
in number) and the entire part. The corollary applies to the pole 
terms while the expansion theory in [ l ] , [4] applies to the entire 
part. 
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