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We shall obtain upper and lower bounds for certain functionals 
associated with linear equations involving positive operators. Atten
tion is focused on these functionals because of their considerable 
physical significance in applications. A bound from one side is furn
ished by the usual variational principle. For boundary value prob
lems the reciprocal variational principle introduced by Friedrichs, 
and later modified by Diaz, provides a complementary bound. In 
the present article we extend these ideas to an integral equation over 
a domain E. Our procedure requires information (which is often 
available) for the same integral equation over some larger domain E'. 
This approach bears resemblance to the one used by Weinstein and 
Aronszajn in a series of papers dealing with eigenvalue problems. 

Suppose then that we wish to estimate 

I = I f(x)u(x)dx 
J E 

where 

(1) u(x) + I k(x, y)u(y)dy = f(x), x £ E. 
J E 

We assume that we know how to solve the integral equation 

(2) Az = z(x) + I k(x, y)z(y)dy = h(x)} x £ E\ 
J E' 

for some domain E'Z)E. 
The situation described above occurs frequently in applications. 

For instance, if the domains are one-dimensional and the kernel is a 
difference kernel k(x —y), then the integral equation (2) is easily 
solved if (a) k(x) has period T and E' is an interval of length T, or 
(b) k(x) is Fourier transformable and Ef is the whole real axis. 

Since the method we employ is not restricted to integral equations, 
we describe it in a slightly more abstract setting. 

Let A be a real, self-adjoint, positive operator on the space of real 
Li functions over E'. The usual inner product of two functions v(x) 
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and w(x) is written (v, w). We denote by P the projection operator 
defined by 

Ph = h(x), x&E, 

= 0, xE(E'-E). 

The integral equation (1) can then be rewritten 

(3) PAu = ƒ, with Pu = u, Pf = ƒ. 

If w has been found, then Au can be calculated for all xÇiE' and 
we have 

(4) Au = ƒ + g with Pg = 0. 

The equation (2) takes the form Az = h, where A"1 is regarded as 
known. 

We wish to estimate 1= (ƒ, u) = (P^4w, w) == (4^, w). It is convenient 
to introduce a new inner product [v, w] = (z;, ,4w), in terms of which 

In what follows we need the Schwarz inequality 

[uy u] à [v, u]2/[v, v] for all v 3 [*>, v] 9e 0, 

and Bessel's inequality in the simple form 

[u, u] ^ [v, v], for all v 3 [v — u, u] = 0. 

From the Schwarz inequality we find the well-known lower bound 

(5) / à (f, v)*/(v, Av) for all v 3 v = Pz>. 

It is clear that the maximum is actually attained for v — cu, where c 
is any nonzero constant. 

To apply the Bessel inequality, we must first characterize functions 
v for which [v — u, u] = (A(v-~u), Pu) = 0. This condition is certainly 
satisfied if PA(u—v) =0 or PAv = f. We should observe that this last 
equation is not identical with (3) since we do not require Pv = v. The 
Bessel inequality then yields the'following upper bound: 

(6) / g (v, Av) for all v 3 PAv = ƒ. 

By choosing v = u, the minimum in (6) is obviously attained. 
We now rewrite (6) with a view toward the application of the 

Rayleigh-Ritz method. Let v0 be an arbitrary fixed function such 
that PAvo—f, that is, 

Avo « f + go, with Pgo » 0. 
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Since A~x is known, this equation can be Solved for any go, but con
venience or physical considerations will usually dictate the choice of 
go. We then define 

Jo = (fltf, AVQ) = (flo, ƒ + go). 

Any function v for which PAv=f can be written v = Vo+w, with 
Aw = q and Pq = 0. Substituting in (6), we find 

(7) I£Io+ 2(v0y q) + (q, A-iq); Pq = 0. 

We note that the right side of this inequality reduces to I when q is 
chosen equal to g— go, where g is defined from (4). 

To apply the Rayleigh-Ritz procedure to (7), we introduce an in
dependent set of functions i/'i, • • • , \f/n with the property Pxpk — O, 
k = l, • • • , n. Then, for any choice of ci, • • • , cni 

I^h+2 (v0, £ cék) + ( Ê crfk, A~l( £ < # / V 

The values of the coefficients which minimize the right side of the 
above inequality are obtained from the Galerkin equations 

(8) (vo, fc> = - È cs(A-Vh *k)\ * = ! , - • • , » . 

The corresponding approximation, call it #*, to g— go is then 

(9) q* = E ftfc, 

where the {c^} are calculated from (8), 
We observe that q* satisfies the reciprocity principle 

so that 

I S h - (q*, A'Y) = /o + <*o, «*>. 

If we use a one term approximation q*~apt we find 

/ S Jo - <*o, *>*/<*, ^~V>; -P* = o. 

In conjunction with (S), we have 

<*,ƒ>»/<*, ;4*> â / S /o - <*o, tA)2/^, 4-V>, 

where P<j>=<t> and P ^ = 0. In practice, the trial functions <£ and ^ 
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should be chosen to be reasonable approximations to u and g—go, 
respectively. 

Applications to physical problems will be described elsewhere. 
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