THE INNER DERIVATIONS OF A JORDAN ALGEBRA

BY JOHN R. FAULKNER ${ }^{1}$

Communicated by A. D. Mostow, September 21, 1966

A Jordan algebra J is an algebra over a field Φ of characteristic $\neq 2$ with a product $a \cdot b$ satisfying

$$
\begin{align*}
a \cdot b & =b \cdot a, \tag{1}\\
\left(a^{2} \cdot b\right) \cdot a & =a^{2} \cdot(b \cdot a) \tag{2}
\end{align*}
$$

where $a^{\cdot 2}=a \cdot a$. The following operator identity is easily derived from (1) and the linearized form of (2)

$$
\begin{equation*}
\left[a_{R}\left[b_{R} c_{R}\right]\right]=\left(a\left[b_{R} c_{R}\right]\right)_{R} \quad \text { for } a, b, c, \in J \tag{3}
\end{equation*}
$$

where x_{R} denotes right multiplication by x and $[u v]=u v-v u$. Letting $D=\left[b_{R} c_{R}\right]$, we see that (3) implies $(d \cdot a) D-(d D) \cdot a=d \cdot(a D)$ for $a, d \in J$. In other words, D is a derivation of the Jordan algebra J. Hence every mapping of the form $\sum\left[b_{i R} c_{i R}\right]$ is a derivation. We shall call such derivations inner derivations and denote the set of all inner derivations of J by $\operatorname{Inder}(J)$. It is easily shown that $\operatorname{Inder}(J)$ is an ideal in the Lie algebra of all derivations of J. We shall show that if the characteristic of Φ is $p \neq 0$, then $\operatorname{Inder}(J)$ is a restricted Lie algebra; that is, $D^{p} \in \operatorname{Inder}(J)$ if $D \in \operatorname{Inder}(J)$.

If \mathfrak{A} is an associative algebra, we denote by \mathfrak{Q}^{+}the Jordan algebra whose vector space is that of \mathfrak{N} and whose multiplication is $u \cdot v$ $=\frac{1}{2}(u v+v u)$. A Jordan algebra J is special if J is a subalgebra of \mathfrak{Q}^{+} for some associative algebra \mathfrak{N}. Let $\Phi\left\{x_{1}, \cdots, x_{n}\right\}$ be the free associative algebra generated by x_{1}, \cdots, x_{n} over the field Φ. An element u in $\Phi\left\{x_{1}, \cdots, x_{n}\right\}$ is called Jordan if u is in the subalgebra of $\Phi\left\{x_{1}, \cdots, x_{n}\right\}+$ generated by 1 and x_{1}, \cdots, x_{n}. We can now state the following

Lemma. If Φ is of characteristic $p \neq 0,2$, then there exist Jordan elements $f_{i}(x, y), i=1,2$ in $\Phi\{x, y\}$ such that $[x y]^{p}=\left[x, f_{1}(x, y)\right]$ $+\left[y, f_{2}(x, y)\right]$.

Proof. We introduce the reversal operation in $\Phi\{x, y\}$ which is an involution $a \rightarrow a^{*}$ such that $x^{*}=x$ and $y^{*}=y$. We say a is reversible if $a^{*}=a$. Let \mathfrak{M} be the subspace of $\Phi\{x, y\}$ of all elements of the form $[x a]+[y b]$ where a and b are reversible. Since by Cohn's theorem

[^0][1] every reversible element of $\Phi\{x, y\}$ is a Jordan element, we need only show that $[x y]^{p} \in \mathfrak{M}$.

Let A be the set consisting of the 2^{p} monomials of the form $u=a_{1} a_{2}$ $\cdots a_{p}$ where $a_{i}=x y$ or $-y x, i=1,2, \cdots, p$. We define an equivalence relation \sim on A by $u \sim v$ if $v=a_{1 \sigma} a_{2 \sigma} \cdots a_{p \sigma}$ where u is as above and σ is a cyclic permutation of $(1,2, \cdots, p)$. An equivalence class determined by \sim has either 1 or p elements since the cyclic permutations of $(1,2, \cdots, p)$ form a cyclic group of order p. Let $A_{1}=\left\{u_{11}=(x y)^{p}\right\}, A_{2}=\left\{u_{21}=(-y x)^{p}\right\}, A_{3}=\left\{u_{31}, u_{32}, \cdots, u_{3 p}\right\}$, $\cdots, A_{e}=\left\{u_{e 1}, u_{e 2}, \cdots, u_{e p}\right\}$ be the equivalence classes determined by \sim.

If $r=b_{1} b_{2} b_{3} \cdots b_{2 p}$ and $s=b_{2} b_{3} \cdots b_{2 p} b_{1}$ where $b_{i}=x$ or $y, i=1,2,3$, $\cdots, 2 p$, then $\left(r-r^{*}\right)-\left(s-s^{*}\right)=\left[b_{1}, b_{2} b_{3} \cdots b_{2 p}+b_{2 p} \cdots b_{3} b_{2}\right] \in \mathbb{M}$. Thus, if $t=b_{1 \tau} b_{2 \tau} \cdots b_{(2 p) \tau}$ where τ is a cyclic permutation of $(1,2, \cdots, 2 p)$, then $\left(r-r^{*}\right)-\left(t-t^{*}\right) \in \mathfrak{M}$. In particular, $\left(u-u^{*}\right)$ $-\left(v-v^{*}\right) \in \mathfrak{M}$ if $u, v \in A$ and $u \sim v$. Also, $\left(u_{11}-u_{11}{ }^{*}\right)+\left(u_{21}-u_{21}{ }^{*}\right) \in \mathfrak{M}$.

Now we may write $[x y]^{p}=(x y-y x)^{p}=\sum u \in A u$. Since $\left([x y]^{p}\right)^{*}$ $=-[x y]^{p}$, we have

$$
\begin{aligned}
{[x y]^{p} } & =\frac{1}{2} \sum u \in A\left(u-u^{*}\right) \\
& =\frac{1}{2}\left\{u_{11}-u_{11}^{*}+u_{21}-u_{21}^{*}+\sum_{i=3}^{\dot{ }} \sum_{j=1}^{p}\left(u_{i j}-u_{i j}^{*}\right)\right\} \\
& =\frac{1}{2}\left\{m+\sum_{i=3}^{\in}\left(p\left(u_{i 1}-u_{i 1}^{*}\right)+m_{i}\right)\right\}
\end{aligned}
$$

where $m, m_{i} \in \mathfrak{M}, i=3, \cdots, p$. Hence $[x y]^{p} \in \mathbb{M}$.
Theorem. If the characteristic of Φ is $p \neq 0$, then the Lie algebra Inder (J) is restricted.

Proof. We recall the following two identities which hold in any associative algebra over Φ [2, pp. 186-187]:

$$
\begin{gather*}
u(\operatorname{ad} v)^{p}=u\left(\operatorname{ad} v^{p}\right), \tag{4}\\
(u+v)^{p}=u^{p}+v^{p}+\sum_{i=1}^{p-1} s_{i}(u, v) \tag{5}
\end{gather*}
$$

where $x(\operatorname{ad} y)=[x y]$ and $s_{i}(u, v)$ is in the Lie subalgebra generated by u and v. Let $D=\sum\left[b_{i R} c_{i R}\right] \in \operatorname{Inder}(J)$. In view of (5), we will have $D^{p} \in \operatorname{Inder}(J)$ if $\left[b_{R} c_{R}\right]^{p} \in \operatorname{Inder}(J)$ for $b, c \in J$.

First we assume that J is special. By writing both sides in terms of the associative multiplication, one verifies the following identity

$$
\begin{equation*}
a\left[b_{R} c_{R}\right]=\left(\frac{1}{4}\right)[a[b c]] \quad a, b, c \in J \tag{6}
\end{equation*}
$$

As an immediate consequence of (6) and (4) we have

$$
\begin{equation*}
a\left[b_{R} c_{R}\right]^{p}=\left(\frac{1}{4}\right)^{p}\left[a[b c]^{p}\right] \quad a, b, c \in J \tag{7}
\end{equation*}
$$

Using the lemma, we may write

$$
\begin{equation*}
[b c]^{p}=\left[b f_{1}(b, c)\right]+\left[c f_{2}(b, c)\right] \quad b, c \in J . \tag{8}
\end{equation*}
$$

Combining (7) and (8) and making use of (6), we see
(9) $a\left[b_{R} c_{R}\right]^{p}=a\left(\frac{1}{4}\right)^{p-1}\left\{\left[b_{R}\left(f_{1}(b, c)\right)_{R}\right]+\left[c_{R}\left(f_{2}(b, c)\right)_{R}\right]\right\} \quad a, b, c \in J$.

Since (9) involves only a, b, and c with a linear and since (9) holds for all special Jordan algebras over Φ, it must hold for all Jordan algebras over Φ by MacDonald's theorem [3]. Thus $\left[b_{R} c_{R}\right]^{p}$ $\in \operatorname{Inder}(J)$, and $\operatorname{Inder}(J)$ is restricted.

References

1. P. M. Cohn, On homomorphic images of special Jordan algebras, Canad. J. Math. 6 (1954), 253-264.
2. Nathan Jacobson, Lie algebras, Interscience, New York, 1962.
3. I. G. MacDonald, Jordan algebras with three generators, Proc. London Math. Soc. 10 (1960), 395-408.

Yale University

[^0]: ${ }^{1}$ The author is a National Science Foundation graduate fellow. The author also wishes to thank Professor N. Jacobson, who originally suggested this research.

