THE INNER DERIVATIONS OF A JORDAN ALGEBRA

BY JOHN R. FAULKNER¹

Communicated by A. D. Mostow, September 21, 1966

A Jordan algebra J is an algebra over a field Φ of characteristic $\neq 2$ with a product $a \cdot b$ satisfying

$$(1) a \cdot b = b \cdot a,$$

(2)
$$(a^{\cdot 2} \cdot b) \cdot a = a^{\cdot 2} \cdot (b \cdot a)$$

where $a^{\cdot 2} = a \cdot a$. The following operator identity is easily derived from (1) and the linearized form of (2)

$$(3) \qquad [a_R[b_Rc_R]] = (a[b_Rc_R])_R \qquad \text{for } a, b, c, \in J$$

where x_R denotes right multiplication by x and [uv] = uv - vu. Letting $D = [b_R c_R]$, we see that (3) implies $(d \cdot a)D - (dD) \cdot a = d \cdot (aD)$ for $a, d \in J$. In other words, D is a derivation of the Jordan algebra J. Hence every mapping of the form $\sum [b_{iR} c_{iR}]$ is a derivation. We shall call such derivations *inner* derivations and denote the set of all inner derivations of J by Inder(J). It is easily shown that Inder(J) is an ideal in the Lie algebra of all derivations of J. We shall show that if the characteristic of Φ is $p \neq 0$, then Inder(J) is a restricted Lie algebra; that is, $D^p \in \text{Inder}(J)$ if $D \in \text{Inder}(J)$.

If \mathfrak{A} is an associative algebra, we denote by \mathfrak{A}^+ the Jordan algebra whose vector space is that of \mathfrak{A} and whose multiplication is $u \cdot v = \frac{1}{2}(uv+vu)$. A Jordan algebra J is *special* if J is a subalgebra of \mathfrak{A}^+ for some associative algebra \mathfrak{A} . Let $\Phi\{x_1, \dots, x_n\}$ be the free associative algebra generated by x_1, \dots, x_n over the field Φ . An element u in $\Phi\{x_1, \dots, x_n\}$ is called *Jordan* if u is in the subalgebra of $\Phi\{x_1, \dots, x_n\}^+$ generated by 1 and x_1, \dots, x_n . We can now state the following

LEMMA. If Φ is of characteristic $p \neq 0, 2$, then there exist Jordan elements $f_i(x, y), i=1, 2$ in $\Phi\{x, y\}$ such that $[xy]^p = [x, f_1(x, y)] + [y, f_2(x, y)]$.

PROOF. We introduce the reversal operation in $\Phi\{x, y\}$ which is an involution $a \rightarrow a^*$ such that $x^* = x$ and $y^* = y$. We say a is reversible if $a^* = a$. Let \mathfrak{M} be the subspace of $\Phi\{x, y\}$ of all elements of the form [xa] + [yb] where a and b are reversible. Since by Cohn's theorem

¹ The author is a National Science Foundation graduate fellow. The author also wishes to thank Professor N. Jacobson, who originally suggested this research.

[1] every reversible element of $\Phi\{x, y\}$ is a Jordan element, we need only show that $[xy]^{p} \in \mathfrak{M}$.

Let A be the set consisting of the 2^p monomials of the form $u = a_1 a_2 \cdots a_p$ where $a_i = xy$ or -yx, $i = 1, 2, \cdots, p$. We define an equivalence relation \sim on A by $u \sim v$ if $v = a_{1\sigma}a_{2\sigma} \cdots a_{p\sigma}$ where u is as above and σ is a cyclic permutation of $(1, 2, \cdots, p)$. An equivalence class determined by \sim has either 1 or p elements since the cyclic permutations of $(1, 2, \cdots, p)$ form a cyclic group of order p. Let $A_1 = \{u_{11} = (xy)^p\}, A_2 = \{u_{21} = (-yx)^p\}, A_3 = \{u_{31}, u_{32}, \cdots, u_{3p}\}, \cdots, A_{\bullet} = \{u_{\bullet 1}, u_{\bullet 2}, \cdots, u_{\bullet p}\}$ be the equivalence classes determined by \sim .

If $r = b_1 b_2 b_3 \cdots b_{2p}$ and $s = b_2 b_3 \cdots b_{2p} b_1$ where $b_i = x$ or y, i = 1, 2, 3, ..., 2p, then $(r - r^*) - (s - s^*) = [b_1, b_2 b_3 \cdots b_{2p} + b_{2p} \cdots b_3 b_2] \in \mathfrak{M}$. Thus, if $t = b_1, b_{2r} \cdots b_{(2p)r}$ where τ is a cyclic permutation of (1, 2, ..., 2p), then $(r - r^*) - (t - t^*) \in \mathfrak{M}$. In particular, $(u - u^*) - (v - v^*) \in \mathfrak{M}$ if $u, v \in A$ and $u \sim v$. Also, $(u_{11} - u_{11}^*) + (u_{21} - u_{21}^*) \in \mathfrak{M}$. Now we may write $[xy]^p = (xy - yx)^p = \sum u \in Au$. Since $([xy]^p)^*$

 $= -[xy]^{p}$, we have

$$[xy]^{p} = \frac{1}{2} \sum u \in A(u - u^{*})$$

= $\frac{1}{2} \left\{ u_{11} - u_{11}^{*} + u_{21} - u_{21}^{*} + \sum_{i=3}^{e} \sum_{j=1}^{p} (u_{ij} - u_{ij}^{*}) \right\}$
= $\frac{1}{2} \left\{ m + \sum_{i=3}^{e} (p(u_{i1} - u_{i1}^{*}) + m_{i}) \right\}$

where $m, m_i \in \mathbb{M}, i=3, \cdots, p$. Hence $[xy]^p \in \mathbb{M}$.

THEOREM. If the characteristic of Φ is $p \neq 0$, then the Lie algebra Inder(J) is restricted.

PROOF. We recall the following two identities which hold in any associative algebra over Φ [2, pp. 186–187]:

(4)
$$u(\operatorname{ad} v)^{p} = u(\operatorname{ad} v^{p}),$$

(5)
$$(u+v)^{p} = u^{p} + v^{p} + \sum_{i=1}^{p-1} s_{i}(u, v)$$

where x(ad y) = [xy] and $s_i(u, v)$ is in the Lie subalgebra generated by u and v. Let $D = \sum_{i=1}^{n} [b_{iR}c_{iR}] \in \text{Inder}(J)$. In view of (5), we will have $D^p \in \text{Inder}(J)$ if $[b_Rc_R]^p \in \text{Inder}(J)$ for $b, c \in J$.

First we assume that J is special. By writing both sides in terms of the associative multiplication, one verifies the following identity

J. R. FAULKNER

(6)
$$a[b_Rc_R] = (\frac{1}{4})[a[bc]] \quad a, b, c \in J.$$

As an immediate consequence of (6) and (4) we have

(7)
$$a[b_Rc_R]^p = (\frac{1}{4})^p[a[bc]^p] \qquad a, b, c \in J.$$

Using the lemma, we may write

(8)
$$[bc]^p = [bf_1(b, c)] + [cf_2(b, c)] \quad b, c \in J.$$

Combining (7) and (8) and making use of (6), we see

(9)
$$a[b_Rc_R]^p = a(\frac{1}{4})^{p-1}\{[b_R(f_1(b, c))_R] + [c_R(f_2(b, c))_R]\}$$
 a, b, $c \in J$.

Since (9) involves only a, b, and c with a linear and since (9) holds for all special Jordan algebras over Φ , it must hold for all Jordan algebras over Φ by MacDonald's theorem [3]. Thus $[b_R c_R]^p \in$ Inder(J), and Inder(J) is restricted.

References

1. P. M. Cohn, On homomorphic images of special Jordan algebras, Canad. J. Math. 6 (1954), 253-264.

2. Nathan Jacobson, Lie algebras, Interscience, New York, 1962.

3. I. G. MacDonald, Jordan algebras with three generators, Proc. London Math. Soc. 10 (1960), 395-408.

YALE UNIVERSITY

210