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1. Introduction. The ring E of entire functions has been extensively 
investigated in recent years, and a good deal of information on the 
ideal theory of this ring is now available. The fundamental result 
here is the theorem of Helmer [3], which asserts that every finitely 
generated ideal of E is a principal ideal of E. For subrings of E, how­
ever, particularly for those determined by growth conditions, this 
result need no longer hold, and our knowledge of the ideal theory of 
such rings is quite fragmentary. In this paper we consider some 
aspects of the ideal theory of certain rings of entire functions defined 
by growth restrictions on the maximum modulus. For simplicity we 
restrict the discussion to the ring Eo of entire functions of exponential 
type. However, as mentioned below, analogous results hold in more 
general rings of entire functions. Full details will appear elsewhere. 

Recall that an entire function ƒ is of exponential type if there exist 
constants ^4>0 and B>0 such that | / ( s ) | ^A-exp(B\z\) for all z. 
I t is easy to construct finitely generated ideals of E0 which are not 
principal. In fact, there exist functions/, gÇEEo which have no com­
mon zeros but which generate a proper ideal of Eo, and here we deal 
with this latter phenomenon. 

M A I N THEOREM. Letfi, • • • , fnÇzE0 and let I denote the ideal of E0 

generated by f i, • • • ,ƒ„. Then I = EQ if and only if there exist constants 
e > 0 and A>0 such that for all z 

(*) I /i(«) I + • • • + I ƒ.(*) I 2£«-exp(-il | z | ) . 

This result is quite similar to the Corona Theorem for the Banach 
algebra H^ of all functions bounded and analytic on the unit disc 
{z: \z\ < l } . (See Hoffman [4] and Carleson [2].) Indeed, our proof 
of this theorem is based on Carleson's Corona Theorem. 

CORONA THEOREM. Letfi, • • • , ƒ«£#« , and let I be the ideal of H* 
generated by fi, • • • , fn. Then 1 = 11^ if and only if there exists a con­
stant ô>0 such that \fi(z)\ + • • • + | / n ( s ) | è ô , | s | < 1 . In this case 
there exist functions gi, • • • , gnCzH* such that figi+ • • • +/ngn = l 
and such that 

M l * S [ Max WfiWJl ̂ Kxb-K\ k = 1, • • • , n, 
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where K\ and K2 are constants depending only on the integer n. 

Note that this result is invariant under conformai mapping, whence 
the Corona Theorem holds for the Banach algebra ^ ( Q ) , 0 being 
any simply-connected region of the complex plane C. 

2. Preliminaries. In this section we state without proof some 
results concerning entire functions of exponential type which enable 
us to apply the Corona Theorem. First, given / £ £ o and i > 0 we 
denote the set { s £ C : | / (*) | < e x p ( - - 4 | s | ) } by S(f; A). Observe 
that the components of S(f; A) are simply-connected regions of C. 

LEMMA. Let /G-Eo be nonconstant. Then there exists a sequence 
{Rk}i-i of positive constants, with 2Rk^Rk+i^^Rkfor all & à l , and a 
constant AQ> 0 such that S(f; A)C\ {\z\ =Rk} = 0 for all k^l and all 
A^A0. 

The proof is omitted, the Lemma being a simple consequence of a 
minimum modulus theorem for functions of exponential type. (Boas 
[1, p. 52, Theorem 3.7.4].) 

INTERPOLATION THEOREM. LetfÇEEo be nonconstant and let A>0. 
Let {Dy}, 7 £ r denote the components of S(f; A), and for each y (ET 
let gy be a function analytic on Dy. Suppose that | gy(z) \ ^B-exp(C* \ z\ ), 
2 £ D 7 , where B and C are constants independent of y. Then there exists 
gGEo such that for each 7 £ r the function (g — gy)/f is analytic on Dy. 

The proof of this theorem is straightforward, but involves techni­
calities too lengthy for the present discussion. Note the similarity of 
this theorem to a result of Carleson ([2, p. 557, Theorem 4]). 

3. Proof of the Main Theorem. Let jfi, • • • , ƒ»££<) and let I 
denote the ideal of E0 generated by / i , • • • , ƒ«. (We suppose that the 
functions ƒ,- are nonconstant.) First, if I = E0, there exist gi, • • • , gn 
G-Eo such that jfigi+ • • • +fngn:=l and the necessity of condition 
(*) follows immediately. 

Conversely, suppose (*) holds. We may assume, without loss of 
generality, that e = 2, so that | / i(*)| + • • • + |/»(s)| à 2 e x p ( - i 4 | s | ) 
for some A > 0 and all z £ C . Let us apply the above Lemma to the 
function/n , and let A0 and {Rk}t=i be the constants for which the 
conclusions of the Lemma are valid. Let A\ be a constant with Ai 
èMax{^4, Ao} and with \fj(z)\ ^A!exp(Ai\z\) for all z&C, 
l£j£n. Then for all zES(fn; Ax) we have \fx(z)\ + • • • + | /» - i (* ) | 
è e x p ( - i l i | s | ) , and S(fn; 4 i ) n { \z\ = Rk}=0 for all k^l. 

Now we shall suppose that S(fn ; Ai)C\ {\ z| g JRI } = 0. (The general 
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result follows from this special case, though we shall not justify this 
statement here.) Let Dy be a component of S(fn; Ai). Since Rk—>+ <*>, 
there exists k^l such that DyC{Rk<\z\ <Rk+i}. Thus, since Rk+i 
<4Rkt for all zEDy 

| /i(«) | + • • • + | fn-i(z) I â exp(-4BRk). 

We now apply the Corona Theorem to the functions fj\Dy, 1 Sj^n, 
considered as elements of the Banach algebra Hn(Dy), thereby ob­
taining functions gi{y), • • • , g^l^H^D^ such that / igiy )+ • • • 
+/n-ign~i=== 1 on Dy Furthermore, for 1 ^i<n we have 

SUP I gi (*) I ^ Max sup \fj(z) I - Z i - e x p ^ i i ^ X î ) . 
eeZXy l£j<n L «607 J 

However, by our choice of Ai we have \fj(z)\ ^Ai exp(4:AiRk) for 
zEDy, 1 ^j<n. Thus, since Rk<\z\ iorzEDyt \g(^(z)\ ^B-exp(C\z\) 
for 1 ^i<n and z(EzDyi where B and C are constants independent of 
the component Dy in question. 

Now the functions g^\ • • • , g ^ exist as above for each com­
ponent Dy of S(fn; A\). Moreover, for each i, l^i<n, the family 
{gty)} satisfies the hypotheses of the Interpolation Theorem, and 
therefore there exist gi, • • • , gn- i££o such that for each component 
Dy of S(fn; Ai) the function (g~gty))/fn is analytic on Dy, l^i<n. 
However, S(fn; Ai) is evidently a neighborhood of the zeros of fn, and 
therefore the function 

gn = (1 - (fig! + • • • +fn-lg»-Ù)/fn 

is an entire function, hence of exponential type. We have now ob­
tained functions gu • • • , g w ££o with/igi + • • • +ƒ»&» = 1. That is, 
I E / , or 7 = £o. Q.E.D. 

One may obtain bounds on the types of the functions gi, • • • , gn. 
We shall not consider this here, however, as a detailed analysis of the 
proof of the Interpolation Theorem is required. Note that the Main 
Theorem follows directly from the Interpolation Theorem in the case 
n = 2, but as yet we have been unable to avoid the use of the Corona 
Theorem in the general case. 

4. Remarks. As mentioned in the Introduction, the methods above 
have application to other rings of entire functions. Roughly speaking, 
results analogous to the Main Theorem hold in rings of entire func­
tions for which appropriate versions of the minimum modulus and 
Interpolation Theorems are valid, since then the Corona Theorem 
may be applied as above. For example, for each p > 0 the result cor-



1967] APPLICATION OF CORONA THEOREM TO RINGS OF ENTIRE FUNCTIONS 249 

responding to our Main Theorem holds for the ring of all entire func­
tions of order p, finite type, the ring E0 being the special case p = l. 
Using this one then obtains a theorem for the ring of all entire func­
tions of finite order. The details of these theorems, as well as exten­
sions of the Main Theorem to more general rings of entire functions, 
will be published elsewhere. 
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