TWO-SIDED IDEALS IN C*-ALGEBRAS

BY ERLING STØRMER

Communicated by R. Arens, October 28, 1966

If \mathfrak{A} is a C^* -algebra and \mathfrak{F} and \mathfrak{F} are uniformly closed two-sided ideals in \mathfrak{A} then so is $\mathfrak{F} + \mathfrak{F}$. The following problem has been proposed by J. Dixmier [1, Problem 1.9.12]: is $(\mathfrak{F} + \mathfrak{F})^+ = \mathfrak{F}^+ + \mathfrak{F}^+$, where \mathfrak{F}^+ denotes the set of positive operators in a family \mathfrak{F} of operators? He suggested to the author that techniques using the duality between invariant faces of the state space $S(\mathfrak{A})$ of \mathfrak{A} and two-sided ideals in \mathfrak{A} , as shown by E. Effros, might be helpful in studying it. In this note we shall use such arguments to solve the problem to the affirmative.

By a face of $S(\mathfrak{A})$ we shall mean a convex subset F such that if $\rho \in F$, $\omega \in S(\mathfrak{A})$ and $a\omega \leq \rho$ for some a > 0, then $\omega \in F$. F is an *invariant* face if $\rho \in F$ implies the state $B \rightarrow \rho(A^*BA) \cdot \rho(A^*A)^{-1}$ belongs to F whenever $\rho(A^*A) \neq 0$ and $A \in \mathfrak{A}$. We denote by F^{\perp} the set of operators $A \in \mathfrak{A}$ such that $\rho(A) = 0$ for all $\rho \in F$. If $\mathfrak{I} \subset \mathfrak{A}$, \mathfrak{I}^{\perp} shall denote the set of states ρ such that $\rho(A) = 0$ for all $A \in \mathfrak{J}$. E. Effros [2] has shown that the map $\Im \to \Im^{\perp}$ is an order inverting bijection between uniformly closed two-sided ideals of \mathfrak{A} and w^* -closed invariant faces of $S(\mathfrak{A})$. Moreover, $(\mathfrak{F}^{\perp})^{\perp} = \mathfrak{F}$, and $(F^{\perp})^{\perp} = F$ when F is a w^* -closed invariant face. If 3 and 3 are uniformly closed two-sided ideals in \mathfrak{A} then $(\mathfrak{Y} \cap \mathfrak{F})^{\perp} = \operatorname{conv}(\mathfrak{Y}^{\perp}, \mathfrak{F}^{\perp})$, the convex hull of \mathfrak{Y}^{\perp} and \mathfrak{F}^{\perp} , and $(\Im + \Im)^{\perp} = \Im^{\perp} \cap \Im^{\perp}$. If A is a self-adjoint operator in \mathfrak{A} let \hat{A} denote the w*-continuous affine function on $S(\mathfrak{A})$ defined by $\hat{A}(\rho) = \rho(A)$. It has been shown by R. Kadison, [3] and [4], that the map $A \rightarrow \hat{A}$ is an isometric order-isomorphism of the self-adjoint part of a onto all w^* -continuous real affine functions on $S(\mathfrak{A})$. Moreover, if \mathfrak{F} is a uniformly closed two-sided ideal in \mathfrak{A} , and ψ is the canonical homomorphism of \mathfrak{A} onto $\mathfrak{A}/\mathfrak{F}$, then the map $\rho \rightarrow \rho \circ \psi$ is an affine isomorphism of $S(\mathfrak{A}/\mathfrak{F})$ onto \mathfrak{F}^{\perp} . Thus the map $\psi(A) \to \widehat{A} | \mathfrak{F}^{\perp}$ is an orderisomorphic isometry on the self-adjoint operators in $\mathfrak{A}/\mathfrak{R}$. We shall below make extensive use of these facts. For other references see **[1, §1]**.

THEOREM. Let \mathfrak{A} be a C*-algebra. If \mathfrak{F} and \mathfrak{F} are uniformly closed two-sided ideals in \mathfrak{A} then

$$(\Im + \mathfrak{F})^+ = \mathfrak{S}^+ + \mathfrak{F}^+.$$

In order to prove the theorem we may assume \mathfrak{A} has an identity, denoted by *I*. We first prove a

LEMMA. With the assumptions as in the theorem let A belong to $(\Im + \Im)^+$, and let $\epsilon > 0$ be given, $\epsilon < 1$. Then there exist B in \Im^+ and C in \Im^+ such that $0 \leq A - B - C \leq \epsilon I$.

PROOF. We may assume $||A|| \leq 1$. Let ψ denote the canonical homomorphism of \mathfrak{A} onto $\mathfrak{A}/\mathfrak{F}$. Then $\psi(\mathfrak{F}+\mathfrak{F}) = \psi(\mathfrak{F})$. Now $\psi(A) \geq 0$. Therefore there exists $B_1 \in \mathfrak{F}^+$ such that $\psi(B_1) = \psi(A)$. Then $\hat{B}_1 | \mathfrak{F}^\perp = 0$ and $\hat{B}_1 | \mathfrak{F}^\perp = \hat{A} | \mathfrak{F}^\perp$. Since $(\mathfrak{F} \cap \mathfrak{F})^\perp = \operatorname{conv}(\mathfrak{F}^\perp, \mathfrak{F}^\perp)$, $\hat{B}_1 | (\mathfrak{F} \cap \mathfrak{F})^\perp \leq \hat{A} | (\mathfrak{F} \cap \mathfrak{F})^\perp$. Let ϕ denote the canonical homomorphism of \mathfrak{A} onto $\mathfrak{A}/\mathfrak{F} \cap \mathfrak{F}$. Then $0 \leq \phi(B_1) \leq \phi(A)$. Let f be the real continuous function $f(x) = (\epsilon/3)^2$ for $x \leq (\epsilon/3)^2$, f(x) = x for $x > (\epsilon/3)^2$. Let

$$S = f(A)^{-1/2} B_1 f(A)^{-1/2}.$$

Then $S \in \mathfrak{S}^+$, and

(1)

$$0 \leq \phi(S) = f(\phi(A))^{-1/2} \phi(B_1) f(\phi(A))^{-1/2}$$

$$\leq f(\phi(A))^{-1/2} \phi(A) f(\phi(A))^{-1/2}$$

$$\leq \phi(I).$$

Let g be the real continuous function g(x) = x for $x \le 1$, g(x) = 1 for x > 1. Since g(0) = 0, g(S) is by the Stone-Weierstrass theorem a uniform limit of polynomials in S without constant terms. Since $S \in \mathfrak{F}^+$, and \mathfrak{F} is uniformly closed, $g(S) \in \mathfrak{F}^+$. By (1)

(2)
$$\phi(g(S)) = g(\phi(S)) = \phi(S).$$

Let

$$B = (f(A)^{1/2} - (\epsilon/3)I)g(S)(f(A)^{1/2} - (\epsilon/3)I).$$

Since $g(S) \in \mathfrak{F}^+$ so is B. Now $(f(x)^{1/2} - \epsilon/3)^2 \leq x$ for $x \geq 0$, and $g(S) \leq I$. Hence $0 \leq B \leq A$. By (2)

$$\phi(B) = (f(\phi(A))^{1/2} - (\epsilon/3)\phi(I))\phi(g(S))(f(\phi(A))^{1/2} - (\epsilon/3)\phi(I))$$

= $\phi(B_1) - (\epsilon/3)[f(\phi(A))^{1/2}\phi(S) + \phi(S)f(\phi(A))^{1/2} - (\epsilon/3)\phi(S)].$

Since $||f(\phi(A))^{1/2}|| \leq 1$, $||\phi(S)|| \leq 1$, and $\epsilon < 1$

 $\|\hat{B}\| (\mathfrak{Y} \cap \mathfrak{Y})^{\perp} - \hat{B}_1 \| (\mathfrak{Y} \cap \mathfrak{Y})^{\perp}\| = \|\phi(B) - \phi(B_1)\| \leq \epsilon.$

In particular,

(3)
$$\|\hat{B}\|$$
 $\mathfrak{F}^{\perp} - A \|\mathfrak{F}^{\perp}\| = \|\hat{B}\|$ $\mathfrak{F}^{\perp} - \hat{B}_1\|\mathfrak{F}^{\perp}\| \leq \epsilon.$

Apply the preceding to A-B instead of A and to \mathfrak{F} instead of \mathfrak{F} . Choose $C_1 \in \mathfrak{F}^+$ such that $C_1 \leq A-B$, and

(4)
$$||C_1| \Im \bot - (A - B)| \Im \bot || \leq \epsilon.$$

(5)
$$\|\tilde{C}_1\|$$
 $\mathfrak{F}^{\perp} - (A - \tilde{B})\|$ $\mathfrak{F}^{\perp}\| \leq \epsilon.$

By (4) and (5)

$$\begin{aligned} \left\|\phi(C_1) - \phi(A - B)\right\| &= \left\|\hat{C}_1\right| \operatorname{conv}(\mathfrak{F}^{\perp}, \mathfrak{F}^{\perp}) \\ &- (A - \hat{B})\left|\operatorname{conv}(\mathfrak{F}^{\perp}, \mathfrak{F}^{\perp})\right\| \leq \epsilon. \end{aligned}$$

Let $D = A - (B + C_1)$. Then $D \ge 0$, and $\|\phi(D)\| \le \epsilon$. Let *h* be the real continuous function h(x) = 0 for $x \le \epsilon$, $h(x) = x - \epsilon$ for $x > \epsilon$. Then $\phi(h(D)) = h(\phi(D)) = 0$, and $h(D) \in (\Im \cap \mathfrak{F})^+ \subset \mathfrak{F}^+$. Furthermore

$$D - \epsilon I \leq h(D) \leq D.$$

Let $C = C_1 + h(D)$. Then $C \in \mathfrak{F}^+$, and by (6)

$$0 \leq B + C \leq B + C_1 + D = A \leq B + C_1 + h(D) + \epsilon I = B + C + \epsilon I.$$

The proof is complete.

PROOF OF THEOREM. Let $A \in (\Im + \mathfrak{F})^+$. Multiplying A by a scalar we may assume $0 \leq A \leq I$. By the lemma choose $B_0 \in \mathfrak{F}^+$, $C_0 \in \mathfrak{F}^+$ such that

$$0 \leq A - B_0 - C_0 \leq 2^{-1}I.$$

Then $||B_0|| \leq ||A|| \leq 1$, $||C_0|| \leq ||A|| \leq 1$. Suppose inductively B_0 , B_1 , \cdots , B_{n-1} are chosen in \mathfrak{F}^+ and C_0 , C_1 , \cdots , C_{n-1} are chosen in \mathfrak{F}^+ such that $||B_j|| \leq 2^{-j}$, $||C_j|| \leq 2^{-j}$, and

$$0 \leq A - \sum_{j=0}^{n-1} B_j - \sum_{j=0}^{n-1} C_j \leq 2^{-n}I.$$

Apply the lemma to $A - \sum_{j=0}^{n-1} B_j - \sum_{j=0}^{n-1} C_j$ and to $\epsilon = 2^{-n-1}$. Then there exist $B_n \in \mathfrak{F}^+$, $C_n \in \mathfrak{F}$ such that

(7)
$$0 \leq A - \sum_{j=0}^{n-1} B_j - \sum_{j=0}^{n-1} C_j - B_n - C_n \leq 2^{-n-1}I,$$

or

$$0 \leq A - \sum_{j=0}^{n} B_{j} - \sum_{j=0}^{n} C_{j} \leq 2^{-n-1}I.$$

Moreover, by (7) $||B_n|| \leq 2^{-n}$, $||C_n|| \leq 2^{-n}$; the induction argument is complete. Let

$$B = \sum_{j=0}^{\infty} B_j, \qquad C = \sum_{j=0}^{\infty} C_j$$

256

[March

Then $B \in \mathfrak{F}^+$, $C \in \mathfrak{F}^+$, and

$$||A - B - C|| = \lim_{n \to \infty} ||A - \sum_{j=0}^{n} B_j - \sum_{j=0}^{n} C_j|| \le \lim_{n \to \infty} 2^{-n-1} = 0.$$

Thus $A = B + C \in \mathfrak{I}^+ + \mathfrak{F}^+$, and $(\mathfrak{I} + \mathfrak{F})^+ \subset \mathfrak{I}^+ + \mathfrak{F}^+$. Since the converse inclusion is trivial, the proof is complete.

References

1. J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.

2. E. G. Effros, Order ideals in a C*-algebra and its dual, Duke Math. J. 30 (1963), 391-412.

3. R. V. Kadison, A representation theory for commutative topological algebra, Mem. Amer. Math. Soc. No. 7, 1951.

4. R. V. Kadison, Transformations of states in operator theory and dynamics, Topology 3 (1965), 177-198.

UNIVERSITY OF OSLO