
DEVELOPMENTS IN THE CLASSICAL NEVANLINNA 
THEORY OF MEROMORPHIC FUNCTIONS1-2 

BY W. H. J. FUCHS 

1. Nevanlinna's theory of meromorphic functions is about forty 
years old. The ideas of this theory reveal a "fine structure" of the dis­
tribution of values that was not visible to the older investigations of 
Picard, Borel and others. The aim of this paper is to report on some 
results concerning this "fine structure," especially on those based 
on the notion of Nevanlinna deficiency. I t covers, therefore, only a 
very small part of the work on Nevanlinna Theory. In particular the 
many important generalizations of the classical Nevanlinna theory 
are not treated at all (Algebroid functions: H. Selberg [63], [64]; 
Meromorphic curves: L. Ahlfors [ l ] , H. and J. Weyl [G]; Mappings 
of a Riemann surface into another Riemann surface: S. S. Chern [7], 
L. Sario [60], [61 ] and (with K. Noshiro) [F]; Holomorphic map­
pings of complex analytic manifolds: R. Bott and S. S. Chern [6]). 

2. By a meromorphic function I shall mean a function mero­
morphic in \z\ <oo. The symbol f(z) will always denote a mero­
morphic function. The core of Nevanlinna's Theory is expressed in 
the two "Fundamental Theorems." Some notation is needed for 
their statement. Let n(r, ƒ) denote the number of poles of ƒ(z) in 
| s | ^Sf, each pole counted with its proper multiplicity (simple pole 
once, double pole twice, • • • ). Then the number of solutions of 
f(z) = c in \z\ Sr is given by n(r, l/(f—c)). Let 

N(r, oo) = N(rJ) = f\n(f,f) ~ n(0J))t~' at + «(O,/) log r, 
J o 

log+1 f(rei$) | dd 
o 

- (log-*-1 n\ — max{log| n\ , 0}). 

N(r, c) = N(r, l / ( / - c)), m(r, c) = m(ry l / ( / - c)) (c £ oo). 

N(r, c) is a smoothed counting function of the c-points of f(z), 
tn(r, c) is a "proximity function" measuring how close ƒ (z) comes to c, 
on the average, on \z\ —r. We can now state the 

1 An address given by Professor Fuchs before the meeting of the Society at New 
York University on February 26, 1966 by invitation of the Committee to Select 
Hour Speakers for Eastern Sectional Meetings; received by the editors December 12, 
1966. 

2 The author gratefully acknowledges support by the National Science Foundation. 

275 



276 W. H. J. FUCHS [May 

FIRST FUNDAMENTAL THEOREM. For every complex number c 

(1) ai(r, ƒ) + N(r,f) = m(r, l / ( / - <0) + N(r, l/(f - c)) + K(r, c)} 

where 

\K(r,c)\ < 2 + l o g + | c | . 

The interest lies here in the behavior of both sides of (1) as r—>co. 
I t turns out that both sides tend to infinity, so that K(c, r) is a 
negligible error-term. 

Proofs of the Fundamental Theorems can be found in Hayman's 
monograph [A]. 

DEFINITION 1. The function 

T(r,f)=m(ryf) + N(r,f) 

is the (Nevanlinna) characteristic f unction of f(z). In the Nevanlinna 
theory the characteristic function takes the role played by 

log MO, / ) = log sup | ƒ(*) | 
\*\£r 

in the older theory of entire functions. 
T(r, ƒ) is an increasing, convex function of log r tending to oo for 

every nonconstant ƒ. Unless f(z) is a rational function 

(2) T(r, f)/log r-x» ( r - * ° o ) . 

and, for constant a, /?, 7, S, 

T(r, (af + p)/(yf + 8)) = T(r,f) + 0(1) («5 - £7 * 0). 

DEFINITION 2. The order p of f(z) is given by 

p = lim sup (log r ( r , /))/log r. 
r—*oo 

The /<wer order X of ƒ (2) is given by 

X = liminf ( logT(r, /)) / logr. 
r—>oo 

For an entire function g(z) 

T(r, g) £ log M{r, g)^(R + r)/(R - r)T(R, g) (R>r). 

Also, if the lower order X of g satisfies O^X^Sf, then (Ostrowski 
[52] ; with p in place of X Valiron [67]) ; 

(3) lim inf log M(r, g)/T(r, g) g ir\ cosec TTX. 



i967] DEVELOPMENTS IN THE CLASSICAL NEVANLINNA THEORY 277 

For X > f the best-possible value on the right-hand side of (3) is 
probably 7rX, but this has not yet been proved. However, V. P. 
Petrenko [57] showed that for every real <j> 

lim inf log | g(re*+) \ /T(r, g) ^ TTX (X > 1/2), 

following an earlier paper by A. A. Goldberg [32] where this is proved 
with p in place of X. Examples of R. E. A. C. Paley [54] show that 
for every order p there are entire functions with 

lim sup log M(r, g)/T(r, g) = <*>. 
T—y oo 

3. SECOND FUNDAMENTAL THEOREM. Let ci, c2, • • • , cq be q ( ^ 2 ) 

complex numbers. Then 

(4) m(r,ƒ) + £ m(r, l / ( / - c,)) ^ 2T(r,f) - N1{r) + S(r), 

where 

Ni(r) = N(r, l / / ( s ) ) + 2N(r,f(z)) - ff(r,ƒ'(*)) 

is the smoothed counting f unction of multiple points {a point of multi­
plicity p is counted p — \ times) and 

5(r) - 0(log r + log T(r)) 

for all r outside a set of finite measure. 
Uf(z) is of finite order, then 

S(r) = 0(logr) 

is true for all large r. 

The term Ni(r) in (4) gives rise to many interesting theorems 
about multiple values; in this paper it will be sufficient to estimate 
it by the obvious inequality 

Nx(f) â 0 (r > 1). 

Dividing (4) by T(r, f) and letting r—»<*> through a suitable se­
quence of values yields the important 

COROLLARY. If ci, c2, • • • , ck are k ( ^ 3 ) distinct values (<*> is not 
excluded), then 

JL m(r, cv) Jt, m(r, cv) 
(5) £ lim inf - ^ - ^ ^ lim inf £ JLL~1 ^ 2. 

„„! r-*oo T(r,f) r->oo Vmml T(fjf) 
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DEFINITION 3. The number 8(c, / ) = l i m infr*ao w(r, c)/T(r, ƒ) is 
the (Nevanlinna) deficiency of c with respect to ƒ (s). 

By the First Fundamental Theorem 

ô(c,f) = l iminfw(f ,c ) / r ( r , / ) 

(6) 
= 1 - lim sup tf(r, c)/T(r,f). 

r—>oo 

I t follows at once that 

0 û i(c,f) ^ 1. 

DEFINITION 4. The value c is deficient with respect to ƒ (2), if 

*(*,ƒ) > 0. 

The inequality (5) yields easily 

THEOREM 1. A meromorphic function f (z) has, at most, a finite or 
denumerable set of deficient values and 

c 

where the summation is over all deficient values. 

If a value c is not assumed by f(z), then, by (6), ô(c, ƒ) = 1. Theorem 
1 contains therefore the sharpened form of 

PICARD'S THEOREM. If'f(z)^a andf(z)9^b, then 5(c,f)=0for every 
c different from a and b. 

4. The study of many types of special functions led R. Nevanlinna 
to the following three 

CONJECTURES, (a) Deficient values are asymptotic values, 
(b) m(r,f')~m(r,f)9 

(c) the number of deficient values of a meromorphic function is 
finite. 

Mme. L. Schwartz and O. Teichmüller [62], [66] independently 
disproved conjecture (a) by giving examples of meromorphic func­
tions with a deficient value which is not an asymptotic value. W. Hay-
man and A. Goldberg gave examples of entire functions with this 
property [39], [27]. Goldberg constructed such entire functions of 
order 1 +€ for every positive e. 

In all these examples the deficiencies are rather small. At the 
International Congress of Mathematicians, Moscow, 1966, A. A. 
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Goldberg announced an example of a meromorphic function with 
6(0, ƒ) = 1, for which 0 is not an asymptotic value. 

Conjecture (b) has been thoroughly investigated and disproved 
in two fairly recent papers by W. K. Hayman [40 ], [41 ]. 

The first counterexample to conjecture (c) was given by A. A. 
Goldberg who gave an example of a meromorphic function with 
infinitely many deficient values [24]. His example was moreover of 
finite order. Later on he refined his construction to show that this 
order could be chosen arbitrarily small. 

Quite recently N. U. Arakelyan [4] proved that there are entire 
functions of every order p > \ with infinitely many deficient values. 
The lower bound \ is best-possible: By a well-known theorem of 
Wiman an entire function g(z) of order < J has the property that 
I g{rne

ie) I —» 00 uniformly in 0 as rn—> 00 through a suitable sequence of 
values. This implies m(rni c ) = 0 for every complex c and n>no(c), 
so that 8(c , j0=0. 

5. I t is natural to ask whether the deficiencies 5(c, ƒ) are subject 
to any restrictions beyond those expressed in Theorem 1. A complete, 
negative answer is known in the case of entire functions: 

THEOREM 2 (FUCHS-HAYMAN [22]). Given a finite or denumerable 
set of complex numbers C\, c2, • • • , and a set of real numbers ôj = 8(cj) 
subject to 0 < S y ^ l , X)ôy:§l, ^ is possible to find an entire function 
f(z) such that 

8(cj,f) = àj, 

and ô(b,f) = 0 for every b which does not belong to the set {c3}. 

There is in all probability an analogous theorem for meromorphic 
functions (now X X ' ^ 2 ) , but this has not been proved, to my knowl­
edge. For the case of a finite number of deficient values with sum < 2 
the analogue is true (Goldberg [23]). 

The situation becomes much more complicated, if attention is 
restricted to functions of finite order or of finite lower order. In this 
case the 8 are subject to further restrictions which are only incom­
pletely known a t present. 

THEOREM 3 (HAYMAN [A, THEOREM 4,2]). If f(z) is a nonconstant 
meromorphic function of finite lower order X and if e>0, then there is a 
constant i£(X, e) such that 

T, (Kc,f))ll3+< < K(\, e). 
In this theorem the ^ in the exponent cannot be replaced by a 
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smaller number, since there are meromorphic functions with 
23(S(a, / ))1 / 3"6= oo (e>0). However, Arakelyan conjectures that in 
the case of entire functions stronger inequalities are true. 

6. An interesting open problem is the investigation of the least 
upper bound of 

A(/) = £«(*,ƒ) 
c 

as ƒ runs through all meromorphic functions of a given order p or 
lower order X. 

A way of attacking this problem is provided by the following 
lemma which is a simple byproduct of Nevanlinna's proof of the 
Second Fundamental Theorem. 

LEMMA 1 (WITTICH [E]). For entire functions of finite order 

A(/) ^ 5(0,ƒ') + « ( » , ƒ ) = 0(0,ƒ') + 1 

for meromorphic functions of finite order 

A ( / ) ^ 2 { « ( 0 , / 0 + « ( « » , ƒ ) } . 

Upper bounds for A can therefore be derived from lower bounds of 

(7) 2 - 8(00) - 5(0) ^ limsup (N(r,f) + N(r, l/f))/T(r,f) = k(f). 
r—>oo 

Nevanlinna made the 
CONJECTURE 1. For every meromorphic function ƒ (z) of order p < <*> 

k(f) ^ | sin wp | /([p] + | sin TTp J ) [p]Sp^ [p] + 1/2, 

^ | sinTrpI /([p] + 1) [p] + 1/2 ^ p ^ [p] + 1. 

A. Edrei [lO] and I. V. Ostrovskii [53] proved independently 

THEOREM 4. Let 

v(x) = 1 (0 ^ x S 1/2), 

= sin TX (1/2 g x ^ 1), 

= | sin7r#|/(^4x + 1/21 sin TX\ ) (1 < x), 

where A <12 is an absolute constant. 
If f(z) is a meromorphic function of order p and lower order X, then 

*(ƒ) ^ sup v(x), 

where k is defined by (7). 
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In some special cases the answer to the problem raised at the be­
ginning of this section is known. Quite recently A. Edrei proved 
the remarkable 

THEOREM 5 [ l l ] . If f(z) is a meromorphic function of lower order 
X<J , then 

A(/) ^ 1. 

This upper bound is attained, if and only iff(z) has one deficient value c 
with ô(c, ƒ) = 1. If f(z) has at least two deficient values, then 

A(jf) < 1 - cos TTX. 

Edrei's paper also contains 
CONJECTURE 2. If f < X ^ 1 , 

A(jf) ^ 2 - sin TTX. 

A. Pfluger has investigated under which circumstances the sum of 
the deficiencies of an entire function can reach the maximum value 2. 
He obtained the beautiful 

THEOREM 6 [58], If f(z) is an entire function of finite order p with 
2cô(c , ƒ) = 2 , then p is a positive integer and, for every deficient value 
c, 8(c, ƒ) is an integral multiple of 1/p. In particular there cannot be 
more than p finite deficient values. 

Additional information is given by 

THEOREM 7 (EDREI-FUCHS [14]). Given e, 0 < e < f , and X>0, 
there is a S = €Si(X) such that every entire function j\z) of lower order X 
with H2cà(c, f)>2 — 8 has the following properties: 

(a) There is a positive integer p such that p differs from the order p 
of f(z) and from the lower order X by less than e. 

(b) There are s^p finite deficient values c\ • • • c8 such that each 
8fo, ƒ) differs by less than Aie from an integral multiple of 1/p and 
S i - i S(cjb, ƒ) > 1 —A2e (Ai and A^ absolute constants). 

(c) Each Ck is an asymptotic value off(z). 

The analogue of Theorem 6 for meromorphic functions is likely 
to be: 

CONJECTURE 3. If f(z) is a meromorphic function of finite order 
with A(f)=2, then the order p of ƒ(z) is of the form p = n/2 
(n = 2, 3, 4, • • • ) ; all deficiencies are multiples of 1/p; in particular 

f(z) has only finitely many deficient values. 
Recently Edrei proved 
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THEOREM 8 [12]. If f(z) is a meromorphic function of lower order 
X ^ l , then A(f)=2 implies that f{z) has either two or three deficient 
values. Also X ^ 5 / 6 . 

I t is very likely that the case of three deficient values cannot occur. 
If this is so, then X = l. 

7. Several results are known for functions of lower order X < 1 . 
Their proofs are based on elaborations of the following simple 

remark: Let 

zoo = n ( i - s/«,)/na - */**) 
be an entire function of order p < l . If for a given r > 0 
E={e\\f{reie)\ >\}, then 

1 C I rei61 1 C I re® 

» ( f . / ) = - S log 1 # - — £ 1 l o g l - — d9. 

If the measure of E is 2/3 (0^/3^TT), then 

-if I 
2x •* » I 

rew 

d$ i r* 
2TT 

f log 1 + 
re* 

a* 
d», 

since log| l—peie\ ( 0 ^ |ö | <TT, p > 0 ) is an increasing function of |0 | 
in 0 ^ loi ^7T. Similarly 

1 r 
27T J E 

re%{ 

. log 1 
2ir J s I &* 

dO è 
î r+* 

log 
7T •/ — fl 

1 - • 
re" 
i* 

de 

and so 

where 

»(',ƒ)£ ^ f log|/i(«*)| (M 

/ i » - n ( i + «/ui)/n(i-«/i»*i). 
Since |/i(re i ö)| is a decreasing function of \$\ in 0^ | f l | ^ir, there is 
a 7, 0^7^7T, such that 

\fi(rei9)\>l (\0\<y), \fi(rei9)\<l (7 < M < *) . 

Obviously 

w(f, / i) = — f7 log|/ iCre») | (» è — f log I /i(re^) | de £ m(r,,/). 
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Since tf(r, ƒ 0 - t f ( r , / ) , 

8(00,/i) « liminf m(r,fà/(f»(r,fà + # ( r , / ) ) 

à Hminf m(f,/)/(m(f,/) + tf(r,/)) = 8( «>,ƒ). 

By the same method we have also 8(0, jfi) è 8(0,/) (A. Goldberg [26], 
with a different proof). This reduces the estimation of 8(0, ƒ) and 
5(°°, ƒ) to the case of functions with real, positive zeros and real, 
negative poles. In this case the relation between the size of the defi­
ciencies and the angle j8 can be worked out in fair detail. This leads to 

LEMMA 2. If K>0 and if f(z) is a meromorphic function of lower 
order X < 1 then the set of numbers 

i»(f) = (X/2)m{9\ \f(re»)\ > K} 

has a limit point /3 such that 

sin irX â (1 - 8(0,/)) sin 0X + (1 - 8( oo, ƒ)) sinfr - 0)X. 

An immediate consequence is (Edrei [10], Ostrovskii [52]). 

THEOREM 9. If f(z) is a meromorphic function of lower order X < 1 
and if a and b are two points of the extended complex plane, 

u = 1 - 8(a, ƒ), v = 1 - 8(0,/), 

then 

0 ^ « g 1, O ^ î i ^ l 

w2 _|_ v2 _ 2^z; cos 7rX è sinô TTX. 

Ifu^ cos xX, /Ae# » = 1. 
For any pair of numbers u0, v0 obeying the restrictions just stated 

there is a meromorphic function of order \for which u~u0, V—VQ. 

More precise information about functions with a deficiency S(a, ƒ) 
Sa 1 —cos 7rX is contained in 

THEOREM 10 (OSTROVSKII [52]; EDREI [10]). Let f{z) be a mero­
morphic f unction of lower order X < ^. Let 

|*|»r 

Then 

.. Iog+M(f,j0 . ?rX . 
hmsup > ~ — - COSTTX- 1 + 8(oo,/)}. 

r-*« T(f,/) sinirX 
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COROLLARY. If ô(<*>, / ) > 1 — cos 7rX, then | ƒ (re49) | —> <*>, uniformly 
in 0, as rn—> °° through a suitable sequence. In particular f(z) has no 
finite deficient value. 

Theorem 10 is, of course, closely connected to Wiman's Theorem 
on entire functions of order less than J. This theorem, in the im­
proved form given to it by Kjellberg [43], states 

THEOREM 11. Letf(z) be an entire function of lower order X< 1. Then 

lim sup (log fx(r,f)/log M(r,f)) è cos xX. 

Recently much work has been done on the closer investigation of 
entire functions of lower order X < 1 (M. Anderson [2], [3], M. Essén 
[19]). Most of this work arose from 

THEOREM 12 (KJELLBERG [44]). Let 0<o,<l. Let f(z) be an entire 
function such that 

log tx(r, ƒ) — cos war log M(r,f) ^ 0 (r > r0). 

Then L = limrH.o0 r~* log M(r) exists and 0<L^ 00. 

8. An extension of Theorem 10 in one direction is 

THEOREM 13 (EDREI [ l l ] ) . Let fiz) be a meromorphic function of 
lower order X and let 5(c, / ) > 0 . If the nonnegative integer q is chosen 
so that 

cos(r\/q) ^ 1 - 5(r, ƒ), q ^ 2X, 

then there is a sequence {rn}, rn—>oo, such that for every rj>0 

liminf tn{d\ \ f(rne
ie) — c\ < rj] ^ 2r/q. 

The sequence rn depends only on T(r, ƒ), not on the choice of c or rj. 

Theorem 13 is the basis of the proofs of Theorems 5 and 8. I t also 
lends support to the following conjecture which was enunciated in a 
weaker form by Teichmüller [66]. 

CONJECTURE 4. Uf(z) is a meromorphic function of lower order X, 
then there is a sequence {rn}, rn—»<*>, such that for every deficient 
value c of ƒ and every TJ > 0 

lim inf m{$ \ \ f(rne
ie) - c \ < rj} ^ inf {2x, (2/X) arc cos(l - ô(c,ƒ))}. 

n—•«> 

The conjecture is true, by Theorem 13, if ô(c, ƒ) = 1 — cos(7rX/#), q a 
positive integer ^2X. 

The truth of Conjecture 4 would imply the truth of Conjecture 2. 
Conjecture 4 was verified by Teichmüller for a very special class 
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of functions. I t receives further support from 

THEOREM 14 (ARIMA [5]). Let f(z) be an entire function of order p. 
Let a(r) be the angle subtended at the origin by the largest arc of \z\ = r 
on which \f(z)\ > 1 . Then 

lim sup a{r) ^ n/p. 
r-»oo 

Notice also that Theorem 9 would be an immediate consequence of 
Conjecture 4. Its inequalities express the obvious fact that the sets 
{d\ \f(reie)—a\ <rj} and {o\ \f(reid)-b\ <r]} are disjoint and of total 
measure S 2w, if rj is sufficiently small. 

9. Since the definition of the iV-function and therefore also of 
ô(c, ƒ) depends only on the absolute values of the c-points of f(z), 
it is surprising that knowledge of the angular distribution of c-points 
gives information about deficiencies. 

THEOREM IS (EDREI [8], EDREI AND FUCHS [16], [17]). If all the 
zeros and poles of the meromorphic function f (z) lie on s^l radial linest 

then f(z) has at most s deficient values other than 0 and oo. If the maxi­
mum number s is attained, each deficient value must be asymptotic. 

The total number of deficient values is at most s+1, this maximum 
can only be attained if 8(0, ƒ) > 0 and 5( oo, ƒ) > 0. 

If 8(c, ƒ) > 0 , C3^0, oo, and if a is the minimum angle between two 
radial lines carrying zeros or poles, then the order p off(z) is less than ir/a. 

If f(z) is of order p, then the number of deficient values other than 0 
and oo is less than min (5, 2p). 

Many generalizations of this theorem are known. The zeros and 
poles need not be exactly on the lines, it is enough that they are close 
to the lines (Ostrovskii [Si]). The radial lines may be replaced by 
curves of certain types (Edrei and Fuchs [17]), the angular condition 
need only be satisfied in some, rather narrow, annuli (Edrei and 
Fuchs [16]). 

THEOREM 16 (EDREI , FUCHS AND HELLERSTEIN [18]). Let all zeros 
au of the entire function f (z) lie on a finite number of radial lines. There 
is a constant k depending only on the configuration of these lines so that 

]C I On |~fc = °°, 2 1 an I""* < °° for some J 

implies 8(0,f)>A, where A is an absolute constant. 

Generalizations to meromorphic functions are given in [42]. 
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THEOREM 17 (OSTROVSKII [SO]). If f(z) is of order p and all poles 
and zeros of f{z) lie in a sector 

a S arg z ^ a + 7 

where 

T/(2TT — y) < p < T/J, 

then 

Ô(c,f) < 1 - cos (YP/2) (c 7* 0, 00). 

10. There are relations between the deficiencies and the structure 
of the power series of an entire function. 

THEOREM 18. If 

(8) ƒ « = E ctf* 
1 

is an entire function of finite order and if 

(9) nk/k->^ (*->«>), 

then f(z) has no finite deficient value. 

This is an immediate consequence of the fact thatf(rei0)—»<*>, uni­
formly in 0, as r—»<*> through a suitable sequence of values [21 ]. 

In the case of functions of infinite order a similar theorem may 
hold with (9) replaced by the condition ^2^/nk< <*>. At present it is 
only known that under this condition f(z) assumes every finite value 
infinitely often. Kövari [45] has proved (implicitly) 

THEOREM 19. If f(z) is an entire function with the power series (8) 
and if 

X„ > w(log nY+* 

then 

Kc,f) = 0 (c* oc). 

Mf Anderson (unpublished) proved 

THEOREM 20. If f(z), given by (8), is an entire function of lower order 
\ < o o and if every circle \z\ =r, r>r0, contains a point at which 
\f(z) I <K,for some positive K, then 

lim inî(njc+1 — nk) S C(X) (k —» 00), 

where the function CÇK) satisfies 
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C(X) = 0(X2l0g+X + l ) . 

I t follows that ƒ (0) can not have a finite deficient value, if 

l iminf(^+i — n%) > C(X). 

THEOREM 21. If the set of exponentials {eink1} J_i is woJ complete in 
L2(—D, D), /Ae^ a// deficiencies of an entire function of lower order X 
zw'tó the expansion (8) satisfy 

8(c,f) < A\D M <*), 

w/^re A is an absolute constant. 

The proof of this theorem is based on Petrenko's improvement of 
an earlier result [20]: 

THEOREM 22 [55]. If f(z) is a meromorphic function of lower order 
X > 0, then for some arbitrarily large r 

\f(re»)/f(re»)\de<B\T(r,f), 
o 

where B is an absolute constant. 

A generalization of an earlier result of A. Pfluger and G. Pólya 
[59] on entire functions with a Borel-deficient value is 

THEOREM 23 (EDREI AND FUCHS [14]). Letfiz) be an entire f unction 
of lower order X with the power series (8). There is an absolute constant 
A such that 

X b(c,f) > 2 - Ae/(\ + 1)(1 + log(X + 1)) 
c 

has the following consequences: The order p and the lower order X are 
close to an integer p. If 

D = lim inf (1/N) ] £ (1/»*) 

5 = lim sup (l/N) £ ( V O , 

then there is an integer s, l^siZp, such that 

(1 ~ e)s/p SD^DS s/p. 
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