THE VANISHING OF A THETA CONSTANT IS A PECULIAR PHENOMENON

BY H. E. RAUCH ${ }^{1}$
Communicated by E. Calabi, November 28, 1966

1. Introduction. The phenomenon in question is the following: (i) if a theta constant θ vanishes at a point t of Torelli space then its gradient (with respect to the coordinates on Torelli space) vanishes there, too; (ii) on the other hand, the locus $\theta=0$ through t is, generically, a hypersurface with tangent plane defined at t, in particular $\theta \neq 0$ on Torelli space.

The reconciliation of (i) and (ii) results from (iii) near t one has $\theta=\Phi^{k}, k>1$ integral, and Φ analytic with nonvanishing gradient at t.

I would speculate that $k=2$, generically, i.e., the locus $\theta=0$ is really the locus $\sqrt{ } \theta=0$.

In the next section I shall prove (i). (ii) is in the thesis of Dr. Farkas [1], while (iii) is an immediate consequence of (i) and (ii) and some standard algebra in several variables. The speculation on the value 2 for k stems from the appearance of those period relations that are known (Schottky). $\S 2$ is a revision of the remarks in [3, pp. 35-37].
2. Definitions and proof of (i). Given a symmetric $g \times g$ complex matrix A with negative definite real part, one can form the Riemann theta function

$$
\theta(u, A)=\sum_{n} \exp (n \cdot A n+2 n \cdot u)
$$

where n ranges over all integral column g-vectors, u is a column g vector of complex numbers, and the dot signifies the usual inner product. If, in addition, one is given two column g-vectors ϵ and ϵ^{\prime} whose entries are 0 or 1 , one defines the first order theta function with binary characteristic

$$
\left[\begin{array}{l}
\epsilon \\
\epsilon^{\prime}
\end{array}\right]
$$

by

$$
\theta\left[\begin{array}{c}
\epsilon \\
\epsilon^{\prime}
\end{array}\right](u, A)=\theta(u+e, A) \exp \left(\frac{\epsilon}{2} \cdot \frac{A \epsilon}{2}+2 \frac{\epsilon \cdot u}{2}+2 \pi i \frac{\epsilon}{2} \cdot \frac{\epsilon^{\prime}}{2}\right)
$$

[^0]where $e=\pi i \epsilon^{\prime} / 2+A \epsilon / 2$. Here e, and with it
\[

\left[$$
\begin{array}{l}
\epsilon \\
\epsilon^{\prime}
\end{array}
$$\right]
\]

is defined to be even or odd according as $\epsilon \cdot \epsilon^{\prime} \equiv 0,1(\bmod 2)$, and

$$
\theta\left[\begin{array}{c}
\epsilon \\
\epsilon^{\prime}
\end{array}\right](u, A)
$$

is an even or odd function of u according as e is even or odd. In particular if e is even then

$$
\partial \theta\left[\begin{array}{c}
\epsilon \\
\epsilon^{\prime}
\end{array}\right](0, A) / \partial u_{j}=0, \quad j=1, \cdots, g
$$

Now define the first order theta constant with characteristic

$$
\left[\begin{array}{c}
\epsilon \\
\epsilon^{\prime}
\end{array}\right] \text { by } \theta_{\epsilon \epsilon^{\prime}}=\theta\left[\begin{array}{l}
\epsilon \\
\epsilon^{\prime}
\end{array}\right](0, A) .
$$

Only the even case is of interest, since all odd theta constants are, of course, identically 0 in A.

Let S be a compact Riemann surface of genus g and let (γ, δ) be a canonical homology basis on S. Further, let $d \xi_{i}, i=1, \cdots, g$ be a set of abelian differentials of first kind with Riemann's normalization with respect to (γ, δ) :

$$
\int_{\gamma k} d \xi_{h}=\pi i \delta_{h k}
$$

Observe that $d \xi_{j}=\pi i d \zeta_{j}, j=1, \cdots, g$, when the $d \zeta$ are the conventional normal differentials of first kind as defined, e.g., in [3].

Now define, given $P \in S$ fixed and $Q \in S$,

$$
\begin{gathered}
\theta_{\epsilon \epsilon^{\prime}}(Q)=\theta\left[\begin{array}{c}
\epsilon \\
\epsilon^{\prime}
\end{array}\right](u, A) \\
A=\left(a_{i j}\right), \quad a_{i j}=\int_{\delta_{j}} d \xi_{i} \\
u=\left(\begin{array}{l}
u_{1} \\
\vdots \\
\vdots \\
u_{g}
\end{array}\right), \quad u_{i}=\int_{P}^{Q} d \xi_{i}, \quad i, j=1, \cdots, g
\end{gathered}
$$

where the path from P to Q is arbitrary but fixed and the same for each i. This is multivalued, but a zero is well defined.

If e is even, then the Riemann vanishing theorem (in view of the vanishing of the first partials of

$$
\theta\left[\begin{array}{l}
\epsilon \\
\epsilon^{\prime}
\end{array}\right](u, A)
$$

at $u=0)([2$, Theorem 6 or 8$])$ implies that

$$
\begin{equation*}
\epsilon_{\epsilon \epsilon^{\prime}}=0 \Rightarrow \epsilon_{\epsilon e^{\prime}}(Q) \equiv 0 \tag{1}
\end{equation*}
$$

In particular if Q lies in some parameter disk about P and has parameter value z (P has the value $z=0$) one finds, setting $P=Q(z=0)$,

$$
0=\frac{d^{2} \theta \epsilon \epsilon^{\prime}(P)}{d z^{2}}=\sum_{i, j} \frac{\partial^{2} \theta\left[\begin{array}{c}
\epsilon \tag{2}\\
\epsilon^{\prime}
\end{array}\right](0, A)}{\partial u_{i} \partial u_{j}} \frac{d \xi_{i}(P)}{d z} \frac{d \xi_{j}(P)}{d z}
$$

where I recall that $P \in S$ is arbitrary.
On the other hand, S and (γ, δ) specify the point $t=\{S, S, 1\} \in J^{g}(S)$ where the transition to any other Torelli space and/or equivalent point on it is easily made by the rules in [3]. I should now like to compute the gradient of $\theta_{e e^{\prime}}$ at t. Using Prescription II of [3] with the obvious changes wrought by the substitution of $a_{i j}$ and $d \xi_{i}$ for $\pi_{i j}$ and $d \zeta_{i}$ one finds

$$
\begin{align*}
\left.\frac{\partial \theta_{\epsilon \epsilon^{\prime}}}{\partial c_{\alpha}}\right|_{c=0} & =-\left.\frac{1}{\pi} \sum_{i \leq j} \frac{\partial \theta_{\epsilon \epsilon^{\prime}}}{\partial a_{i j}} \frac{\partial a_{i j}}{\partial e_{\alpha}}\right|_{c=0} \\
& =-\frac{1}{\pi} \sum_{i \leq j} \frac{\partial \theta\left[\begin{array}{c}
\epsilon \\
\epsilon^{\prime}
\end{array}\right](0, A)}{\partial a_{i j}}\left(\frac{d \xi_{i}}{d z} \frac{d \xi_{j}}{d z}, \mu_{\alpha}\right) \tag{3}\\
& =-\frac{1}{\pi}\left(\sum_{i \leq j} \frac{\partial \theta\left[\begin{array}{c}
\epsilon \\
\epsilon^{\prime}
\end{array}\right](0, A)}{\partial a_{i j}} \frac{d \xi_{j}}{d z} \frac{d \xi_{j}}{d z}, \mu_{\alpha}\right) .
\end{align*}
$$

But I claim that the sum on the right side of (2) is 4 times the sum in parenthesis in the last expression in (3). If one grants this then (1) and (2) imply immediately that

$$
\begin{equation*}
\theta_{\epsilon \epsilon^{\prime}}=\left.0 \Rightarrow \frac{\partial \theta_{\epsilon e^{\prime}}}{\partial c_{\alpha}}\right|_{c=0}=0, \quad \alpha=1, \cdots, 3 g-3 \tag{4}
\end{equation*}
$$

which is statement (i) of $\S 1$.

To establish the remaining link I invoke the "heat equations"

$$
\begin{aligned}
2 \frac{\partial \theta\left[\begin{array}{c}
\epsilon \\
\epsilon^{\prime}
\end{array}\right]}{\partial a_{i j}}(u, A) & =\frac{\partial^{2} \theta\left[\begin{array}{c}
\epsilon \\
\epsilon^{\prime}
\end{array}\right]}{\partial u_{i} \partial u_{j}}(u, A), \quad i \neq j \\
& =\frac{1}{2} \frac{\partial^{2} \theta\left[\begin{array}{l}
\epsilon \\
\epsilon^{\prime}
\end{array}\right]}{\partial u_{i}{ }^{2}}(u, A), \quad i=j
\end{aligned}
$$

in which I put $u=0$, and then I split the sum $\sum_{i, j}$ in (2) into $2 \sum_{i<j}+\sum_{i=j}$.

Bibliography

1. H. Farkas, Special divisors, theta nulls, and analytic subloci of Teichmiller space, Amer. J. Math. 88 (1966), 881-901.
2. J. Lewittes, Riemann surfaces and the theta function, Acta Math. 111 (1964), 37-61.
3. H. E. Rauch, A transcendental view of the space of algebraic Riemann surfaces, Bull. Amer. Math. Soc. 71 (1965), 1-39.

Belfer Graduate School of Science, Yeshiva University

[^0]: ${ }^{1}$ Research partially sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, U. S. Air Force, under AFOSR Grant No. AF-AFOSR-1077-66.

