INTRINSIC METRICS ON COMPLEX MANIFOLDS

BY SHOSHICHI KOBAYASHI¹

Communicated by S. Smale, January 17, 1967

1. Definition of intrinsic pseudometric. Let M be a (connected) complex manifold. We shall define a pseudometric d on M in a natural manner so that it depends only on the complex structure of M and nothing else.

Let D be the open unit disk in the complex plane and ρ the distance on D defined by the Poincaré-Bergman metric of D. Given two points ρ and q of M, choose the following objects:

- (1) points $p = p_0, p_1, \dots, p_{k-1}, p_k = q$ of M and
- (2) points $a_1, \dots, a_k, b_1, \dots, b_k$ of D and holomorphic mappings f_1, \dots, f_k of D into M such that $f_i(a_i) = p_{i-1}$ and $f_i(b_i) = p_i$ for $i = 1, \dots, k$.

For each choice of points and mappings satisfying (1) and (2), consider the number $\rho(a_1, b_1) + \cdots + \rho(a_k, b_k)$. Let d(p, q) be the infimum of the numbers obtained in this manner for all possible choices. It is easy to verify that d is a pseudometric on M in the sense that

$$d(p,q) \ge 0$$
, $d(p,q) = d(q,p)$, $d(p,q) + d(q,r) \ge d(p,r)$

for p, q, $r \in M$. The following two propositions are immediate from the definition of d.

PROPOSITION 1. Let M and N be two complex manifolds and d_M and d_N the intrinsic pseudometrics of M and N. Then every holomorphic mapping $f: M \rightarrow N$ is distance-decreasing in the sense that

$$d_M(p,q) \ge d_N(f(p),f(q))$$
 for $p,q \in M$.

In particular, every holomorphic transformation of M is distance-preserving with respect to d_M .

PROPOSITION 2. For the complex Euclidean space C^n , the pseudometric d is trivial, i.e., d(p, q) = 0 for all $p, q \in C^n$.

The following proposition follows from the Schwarz-Pick lemma.

PROPOSITION 3. For the unit disk D, the pseudometric d coincides with the distance ρ defined by the Poincaré-Bergman metric.

¹ Supported partially by NSF Grant GP-5798.

The following theorem follows from a generalized Schwarz-Pick lemma (see [3] and [4]).²

THEOREM 4. Let M be a hermitian manifold whose holomorphic sectional curvature is negative and bounded away from zero. Then its pseudometric d is a metric, i.e., d(p, q) = 0 implies p = q.

Theorem 4 applies to all bounded domains of C^n as well as to all Riemann surfaces of hyperbolic type.

2. Relationship with Carathéodory metric. Following Carathéodory [2] we define another pseudometric d' on a complex manifold M. Given two points p and q of M, let d'(p, q) be the supremum of $\rho(f(p), f(q))$ for all holomorphic mappings f of M into the unit disk D.

It is easy to see that Propositions 1, 2 and 3 above hold also for the Carathéodory pseudometric d'. A necessary and sufficient condition for d' to be a metric on M is that there are sufficiently many bounded holomorphic functions on M so that they separate the points of M.

The following proposition is immediate from Propositions 1 and 3 and shows that whenever the Carathéodory pseudometric d' is a metric, our pseudometric d is also a metric.

Proposition 5. For any complex manifold M, d is greater than or equal to d', i.e.,

$$d(p,q) \ge d'(p,q)$$
 for $p,q \in M$.

3. **Applications.** The following theorem which follows from Propositions 1 and 2 and Theorem 4 may be considered as a generalization of Picard Theorem which states that an entire function with more than one finite lacunary value reduces to a constant function.

Theorem 6. Let M be an n-dimensional complex manifold which admits a hermitian metric whose holomorphic sectional curvature is negative and bounded away from zero. Then every holomorphic mapping f of C^m into M is a constant map.

COROLLARY. The complex Euclidean space C^m does not admit a hermitian metric whose holomorphic sectional curvature is negative and bounded away from zero.

The condition "bounded away from zero" is essential. In fact, C

² The results proved for Kähler manifolds in [4] hold for hermitian manifolds (with respect to the hermitian connection in the sense of Chern). Proofs there remain valid in the hermitian case.

(and hence C^m) admits a complete Kähler metric of negative holomorphic sectional curvature, e.g.,

$$(1 + z\bar{z}) dz d\bar{z}$$
.

Theorem 7. Let M be a hermitian manifold whose holomorphic sectional curvature is negative and bounded away from zero. Then the group of holomorphic transformations of M is a Lie group with compact isotropy subgroups (with respect to the compact-open topology).

In fact, the group in question is a closed subgroup of the group of isometries of M with respect to the intrinsic metric d introduced above. By a classical theorem of Van Dantzig and van der Waerden (see Theorem 4.7 and Corollary 4.8 of Chapter I in [5]) the group of isometries of a locally compact metric space is locally compact and its isotropy subgroups are all compact with respect to the compact-open topology. Theorem 7 follows now from a well-known theorem of Bochner-Montgomery [1].

COROLLARY 8. If, in Theorem 7, M is moreover compact, then the group of holomorphic transformations of M is a finite group.

The results in this section have been obtained by Wu [6] using the notion of normal families.

BIBLIOGRAPHY

- 1. S. Bochner and D. Montgomery, Locally compact groups of differentiable transformations, Ann. of Math. 47 (1946), 639-653.
- 2. C. Carathéodory, Über das Schwarzsche Lemma bei analytischen Funktionen von zwei komplexen Veränderlichen, Math. Ann. 97 (1926), 76-98.
- 3. H. Grauert and H. Reckziegel, Hermitesche Metriken und normale Familien holomorphic Abbildungen, Math. Z. 89 (1965), 108-125.
- 4. S. Kobayashi, Distance, holomorphic mappings and the Schwarz's lemma, J. Math. Soc. Japan (to appear).
- 5. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience Tracts No. 15, Interscience, New York, 1963.
- 6. H. H. Wu, Normal families of holomorphic mappings and the theorem of Bloch in several complex variables (to appear).

University of California, Berkeley