AN EXAMPLE IN THE CALCULUS OF FOURIER TRANSFORIMS

BY ROBERT KAUFMAN

Communicated by R. C. Buck, December 21, 1966
0 . The functions which operate on Fourier or Fourier-Stieltjes transforms have been investigated by Helson, Kahane, Katznelson, and Rudin, especially in [1]. In this note we give an example of a positive measure on the Cantor group D_{2}, whose Fourier-Stieltjes transform has range in $[0,1]$, and on which the continuous functions operating must have a high degree of analyticity. Our method of expanding this function is based on Bernstein polynomials and is quite different from that of [1].

1. Let D_{2} be the complete direct sum $Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus \cdots, e_{n}$ the unit mass at 0 in the nth factor, m_{n} the uniform ($1 / 2,1 / 2$) mass in the same group. For a dense sequence $\left\{a_{n}\right\} \subseteq[0,1]$ we form the infinite product measure

$$
\mu=\prod_{1}^{\infty}\left\{a_{n} e_{n}+\left(1-a_{n}\right) m_{n}\right\}
$$

Denote by W the set of complex numbers $\{|z|<1\}-\{-1<z \leqq 0\}$.
Theorem. Iff is continuous in $[0,1]$ and $f \circ \hat{\mu}$ is a Fourier-Stieltjes transform on \hat{D}_{2}, then f can be extended to a function bounded and analytic in W.

The proof is based on certain measures σ on the N-fold sum $Z_{2} \oplus Z_{2} \oplus \cdots \oplus Z_{2}$, in which each element is an N-tuple $\left(x_{1}, x_{2}, \cdots, x_{N}\right)\left(x_{i}=0,1,1 \leqq i \leqq N\right)$. Say that σ is special if it is invariant with respect to permutations of the coordinates x_{1}, \cdots, x_{N}. A special measure is a linear combination of the measures $\sigma_{j}, 0 \leqq j \leqq N$, described as follows: σ_{j} assigns mass 1 to every element x for which $\sum_{i=1}^{N} x_{k}=j$.

For any special measure σ there are defined numbers $b_{0}, \cdots, b_{N}: b_{k}$ is the value of $\hat{\sigma}$ on the character

$$
x \rightarrow(-1)^{\sum_{i-1}^{k} x_{i} .}
$$

Lemma. For a special measure σ, set

$$
B(x)=\sum_{0}^{N} b_{k}\binom{N}{k} x^{k}(1-x)^{N-k}
$$

Then

$$
B(x)=\sum_{0}^{N} c_{k}(1-2 x)^{k}, \quad \text { with } \quad \sum_{0}^{N}\left|c_{k}\right| \leqq\|\sigma\| .
$$

Proof. Because the measures $\sigma_{0}, \cdots, \sigma_{N}$ are mutually singular it is enough to verify the estimate for each σ_{j}. The number b_{k} is the coefficient of s^{j} in $(1-s)^{k}(1+s)^{N-k}$; we write this as $(j!)^{-1} \partial^{j} / \partial s^{j}\left[(1-s)^{k}(1+s)^{N-k}\right]$ (the derivative is ultimately evaluated at $s=0$). Then

$$
\begin{aligned}
B(x) & =(j!)^{-1} \frac{\partial^{j}}{\partial s^{j}}\left[\sum_{k=0}^{N}\binom{N}{k} x^{k}(1-x)^{N-k}(1-s)^{k}(1+s)^{N-k}\right] \\
& =(j!)^{-1} \frac{\partial^{j}}{\partial s^{j}}(1+s-2 x s)^{N} \\
& =\binom{N}{j}(1-2 x)^{j}, \quad \text { at } s=0 .
\end{aligned}
$$

Since

$$
\left\|\sigma_{j}\right\|=\binom{N}{j}
$$

the lemma is proved.
To prove the theorem, we provide D_{2} with coordinates $\left(x_{1}, x_{2}, \cdots, x_{n}, \cdots\right)$ and let ξ_{n} be the character $x \rightarrow(-1)^{x_{n}}$ $(1 \leqq n<\infty)$. Now if $n_{1}<n_{2}<\cdots<n_{N}$ and $\epsilon_{i}=0,1(1 \leqq i \leqq N)$

$$
\hat{\mu}\left(\epsilon_{1} \xi_{n_{1}}+\cdots+\epsilon_{N} \xi_{n_{N}}\right)=\prod_{i=1}^{N}\left\{1+\epsilon_{i}\left(a_{n_{i}}-1\right)\right\},
$$

and

$$
f \circ \hat{\mu}\left(\epsilon_{1} \xi_{n_{1}}+\cdots+\epsilon_{N} \xi_{n_{N}}\right)=f(\Pi)
$$

Since $\left\{a_{n}\right\}$ is dense in $[0,1]$, we see by choosing the indices n_{1}, \cdots, n_{N} carefully that, for every N and every $b \in[0,1]$, the function g_{b} defined on the dual of Z_{2}^{N} by the formula

$$
g_{b}\left(\epsilon_{1}, \cdots, \epsilon_{N}\right)=f\left(b \sum_{1}^{N} \epsilon_{i}\right)
$$

is the transform of a special measure on Z_{2}^{N} with norm at most $\|f(\mu)\|$.

For each $r>0$ define $\phi_{r}(u)=f\left(e^{-r u}\right), 0 \leqq u \leqq 1$. Then ϕ_{r} is the uniform limit of the Bernstein polynomials

$$
\begin{aligned}
B_{N}(u) & =\sum_{0}^{N}\binom{N}{k} \phi_{r}(k / N) u^{k}(1-u)^{N-k}, \\
& \quad(0 \leqq u \leqq 1, \quad N=1,2,3, \cdots) \\
& =\sum_{0}^{N}\binom{N}{k} f\left(e^{-r k / N}\right) u^{k}(1-u)^{N-k},
\end{aligned}
$$

Widder [2].
By the lemma, and the subsequent remarks,

$$
B_{N}(u)=\sum_{0}^{N} c_{k, N}(1-2 u)^{k} \quad \text { with } \quad \sum_{0}^{N}\left|c_{k, N}\right| \leqq\|f(\mu)\| .
$$

Clearly the B_{N} 's form a normal family in $\{|u-1 / 2|<1 / 2\}$, so that ϕ_{r} can be extended to a function analytic in this open set and bounded by $\|f(\mu)\|$. But this just means that f can be extended to an analytic function of (the principal branch) of log, in the set where log has real part between e^{-r} and 1. As $r \rightarrow \infty$ the theorem is proved.

References

1. H. Helson, J.-P. Kahane, Y. Katznelson, and W. Rudin, The functions which operate on Fourier transforms, Acta Math. 102(1959), 135-157.
2. D. V. Widder, The Laplace transform, Princeton Univ. Press, Princeton, N. J., 1942.

University of Illinots

