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1. Summary. The object of this note is to prove the theorem below 
and sketch two applications, one to statistical estimation for (proba­
bilistic) functions of Markov processes [ l ] and one to Blakley's 
model for ecology [4]. 

2. Result. 

THEOREM. Let P(x)=P({xij}) be a polynomial with nonnegative 
coefficients homogeneous of degree d in its variables {##}. Let x= {##} 
be any point of the domain D: ##§:(), ]pLi ## = 1, i = l, • • • , p, 
j=l, • • • , q%. For x= {xij} ££> let 3(#) = 3{##} denote the point of D 
whose i, j coordinate is 

( dP\ \ f « dP 
3(*)<i = ( Xij 7— ) / 2 * *<i — 

\ dXij\(X)// , - i dXij (»> 
Then P(3(x))>P(x) unless 3(x)=x. 

Notation, fi will denote a doubly indexed array of nonnegative 
integers: fx= {M#}> i = l > • • • > <lu i=l, • • • , A #* then denotes 
I l f - i H î - i ^ * Similarly, cM is an abbreviation for C[MiJ}. The poly­
nomial P({xij}) is then written P(x) = ]CM V^-

In our notation : 

(1) 3(&)*i = ( Z) «Wnys* ) / JLH CpiiijX». 

We wish to prove 

(2) PO) = E <^" ^ z ^ n f i 3(*)«w. 

PROOF. 

^ ) = iknii3(*)«} 
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We apply Holder's inequality [6, p. 21] to obtain 

/ P Qi \ 

( P Qi / %.. \Mild\ * 

(3) x {E^nn~-) } 
(In the last braces we have used (x»)d+lld=x* ü f - i H j - i ^ / t f 0 S i n c e 
Z ? - i Zî-iMtf/^5 51 by homogeneity of P , we can apply the inequality 
of geometric and arithmetic means [6, p. 16] to the double products 
of the second brace of (3) to conclude: 

P Qi / X.-J \PHld P Qi nu Xss 

(4) Evnnfe- i i ^ E L ? ^ -
We now substitute the definition (1) of 3(#)# in the expression on 

the right of (4) and interchange the order of summation to obtain: 
P Qi n . . < Y » . . 

2- c,x" 2- 2- -r 77-r" 
\ P Qi 

= "J Z <T»*M X S /*</*# 

(5) ' ( Z Z Ctfp'ijJP' ) / ( Z <V/4^M' ) 

= — £ Z ^i f £ M*;VM J / ( Z MW*M'J 

* Z Z '̂Mtfo '̂-
io- i M' 

For each (i, j) the expression within the brackets is = 1 and by hy­
pothesis for each i, Z?-ix*y = *• Hence the whole last expression of (5) 
reduces to (1/d) Z f - i Z?{-i Z M V / 4 0

X M ' - But this is just (1/d) Z</a**/o 
• (dP/dXij0) so by the Euler theorem for homogeneous functions it is 
equal to 2/lcMa;'1. 

Finally, if we use this upper bound H^W for the expression within 
the second braces in (3), raise both sides of (3) to the ( d + l ) s t power, 
and divide both sides of the resulting inequality by ÇSpW) we ob­
tain the desired inequality (2). 

That P(3{xij})>P{xij) if {##}?*{##} follows from (4) and the 
strictness of the inequality of geometric and arithmetic means if all 
summands are not equal. 
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3. Application 1. The first application of this theorem is to statisti­
cal estimation for (probabilistically) lumped Markov chains. Let 5 
be the finite state space of a Markov chain. Let ƒ be a function from 
5 to R. Let yG.RT, T an integer, be an observation. In [l ] the problem 
is considered of estimating the transition probabilities a# for i, j&S, 
given y. 

Let X=(fT)-1(y). XQST. For xEX, i, jES, let Vij{x) be the num­
ber of times the pattern •, •, •, i, j , •, -, • occurs in x. The function 
P ( {##}) = Z » e x TLiJesaVij^x) m a y t>e interpreted as the "probability 
of observing y given the transition probabilities {##}." Note that P 
is a homogeneous polynomial of degree T with nonnegative (integer) 
coefficients in the variables a#. 

An iterative procedure for estimating the transition probabilities 
{&<;} given y is suggested in [ l ] . If {ay} is an a priori estimate, let 
4 j = ( ] £ * e j r Pij(x) TLk,iG8 öww(af)/-P({^y})« A'a m a Y be interpreted as 
the "a posteriori expected value of the frequency of transition from 
state i to state j given y and the a priori probabilities {da}." Thus 
AyXjA'u may be thought of as an "a posteriori estimate of the transi­
tion probabilities given y." Since 

A'ufàA'H = a^dP/da^/^aaidP/dai,) 

by our theorem applied to the transformation 3{#<,-} = {A'^fLA'^} 
we conclude that -P (3{a#})èP({a#}) . In other words the a pos­
teriori estimate of transition probabilities increases the likelihood of 
the given observation y. 

Various results on the convergence of hill climbing iteration pro­
cedures [2], [3], [5] may be adduced to show that for almost all 
starts successive iterations will converge to a connected component 
of the local maximum set of P . If P has only finitely many local max­
ima then successive iterates converge to a point. 

This is the usual case in the more general situation considered in 
[ l ] in which the observation yt a t time t is obtained from the Markov 
state xt a t time t according to P(yt = k \ xt =j) = b3-k where bjk is an 5Xr 
stochastic matrix which is also to be estimated. Here the identifiabil-
ity problem does not arise since, according to a theorem of Ted 
Pétrie [7], "in general" no other (a#), (bjk) yields the same ^proba­
bilities as a given (a°y), (&°*) (save for the si relabellings of states). 

The second application is to some results of Blakley and Dixon 
[2]» [3], [4]. Let r be a symmetric ^-linear form on Rn that has 
nonnegative coefficients with respect to the standard basis for Rn. 
Let g(rj) = T(rj, TJ, • • • , rj) where rj is a vector in Rn. Since g is then 
just a pth. degree homogeneous polynomial with nonnegative coefiv 
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cients of the components of rj we may apply the theorem of this note 
to it. In Blakley's model g is the adaptation (rate of growth) 
of a population. The transformation in Blakley's model cr(rj) 
==r]i(dg(v)/drli)/pÇ[(y) is the same as the transformation 3 {#»-,*} where 
Xij^rjj, * = 1, i = l , • • • , n. 

In Blakley's model if rj is the distribution of genotypes at time t> 
then a(r]) is the distribution at time t+l. Thus it follows from the 
theorem in this note with i = 1 that adaptation is nondecreasing with 
time when evolution of the genotypes at a single locus is considered. 
Our theorem with i>\ yields the same conclusion under natural 
hypotheses for evolution of the genotypes at several loci. This non-
decreasing of the adaptation with time is clearly a desirable feature 
of the model. 
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