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1. Let X be a real normed space with norm || ||, T the radial pro
jection mapping defined by 

Tx = x, if ||*|| g 1, and Tx = x/\\x\\9 if \\x\\ ^ 1. 

Our concern is with the Lipschitz constant of T; i.e. with the constant 
K such that || J # — 7 j | | ^i£||#—;y|| for all x, y in X. In particular, we 
wish to determine under what conditions on the space X the mapping 
T will be nonexpansive, i.e. K = l. 

T is a special case of a proximity mapping defined by a convex set 
in a normed vector space, i.e. a mapping which assigns to each point 
of X, the nearest point of the convex set C. There has been a good 
deal of interest in recent years in proximity maps, nonexpansive 
mappings, and their interrelations (Moreau, Browder, Petryshyn, 
Kirk, De Prima, Lions and Stampacchia, and others). I t is easy to 
see that if X is an inner product space (and in particular, a Hilbert 
space), then T and every proximity map is nonexpansive. More pre
cisely, Kirk and Smiley [ l] proved that X is an inner product space 
if and only if for all nonzero x and y in X 

h/\\4-y/\\y\\UV(\\4 + b\\)h-yl 
For an arbitrary normed space X, Dunkl and Williams [2] have 
proved that for all nonzero x, y in X 

\\*A\4-yAM\\\**/<\\4 + M\)\\*-4\. 
From this it can be seen that KS2. This bound is the best possible 
because it is easily seen that for /i, K = 2. 

I t is of great interest in nonlinear functional analysis to know if 
there is a normed space which is not an inner product space and for 
which K = 1. We prove the following theorem which shows that such 
spaces exist only for the trivial case of dimension two. 

THEOREM. If X has dimension not less than three, then X is an inner 
product space if and only if T is nonexpansive. 

If X has dimension two then the nonexpansiveness of T does not imply 
that X is an inner product space. 

1 The first author was supported by N.S.F. Grant GP-4921, and the second by 
N.S.F. Grant GP-3666. 
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I t is also reasonable to ask about the relation of K to other geo
metric entities of the space. A discussion of this question will appear 
in another paper. 

The theorem is split into the following three propositions which 
are proved in the sequel. 

PROPOSITION 1. T is nonexpansive if and only if X has the following 
property 

(P) For every ordered pair of nonzero vectors (x, y) such that ||#|| 
= ||;y|| and ||#—X0y|| 5j||#—Xy|| for all X, it follows that |Xo| ̂ 1 . 

REMARK. If X has a strictly convex norm and if it has property 
(P), then |X0| < 1 if x and y are linearly independent. The proof of 
this fact is similar to the second part of the proof of Proposition 1. 

PROPOSITION 2. If X has dimension not less than three, then X has 
property (P) if and only if X is an inner product space. 

PROPOSITION 3. X has property (P) if and only if X has the following 
property 

(J) For every ordered pair of nonzero vectors (x, y) such that ||x|| 
g| |x—Xj| | for all X, it follows that ||;y|| 2§||;y—X#|| for all X. 

REMARK. Property (J) expresses that orthogonality in the sense of 
James [3] is symmetric. Birkhoff [4] discusses property (J) and gives 
an example of a 2-dimensional space which has this property but 
which is not an inner product space. 

2. Corresponding to each ordered pair of nonzero vectors (x, 3/) 
we define the real-valued function 

</>(A) = 0(X; x,y) = \\x — Xy||, —00 < X < 00. 

I t follows that <j> is a convex function, it assumes its minimum value 
for X in a finite interval [Xi, X2], and it is strictly decreasing (increas
ing) for X <Xi (X>X2). If X has a strictly convex norm, then 0 is a 
strictly convex function and Xi=X2. In terms of the function </>, we 
may restate property (P) as follows. 

(P) For every ordered pair of nonzero vectors (x, y), such that 
IN I = IHI» the function <j> is strictly decreasing (increasing) for 
X ^ - l ( X è l ) . 

PROOF OF PROPOSITION 1. We first assume that X has property (P) 
and prove that T is nonexpansive. I t suffices to prove the following 
inequalities 

(i) | | x _ y / y | | g | | x _ y | | , f o r | H | g i < y . 

(2) ||*/||*|| - y/\\y\\ || <; Ij* - y||, for 1 ^ ||*|| è ||y||. 
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The inequality (1) is a direct consequence of property (P) applied 
to the pair (#, \\x\\/ 
(P) to the pair (x/\ 

\y)- If 1 â||x\\ =s||y\\, an application of property 
, 3>/IHI) yields 

IMMI - y/IWI II ^ IMMI - (IMI/MMHI II - a/NI>ll* - y\\> 
which implies the inequality (2). 

Next we assume that T is nonexpansive and prove that X has 
property (P). I t is sufficient to consider an ordered pair of vectors 
(x, y) such that ||#|| =| |y| | = 1 because |a|<£(X; x, y)=<l>(\; ax, ay). 
For such a pair, the nonexpansiveness of T implies 

I I*-?M II*-Ml 
and for all X è 1. 

||* + y|| £ | |* + xy|| 
Since <£(X; x} y) is convex, this shows that <t> is increasing (decreasing) 
for X ^ l (Xg —-1). To finish the proof we need to show that (j> is 
strictly increasing {strictly decreasing) for X ^ l (X ĝ — 1). Suppose, on 
the contrary, that <j> is not strictly increasing for X è l . Then there 
exists a constant d> 1 so that 0(X; xf y) =<£(1, x> y) for 1 fgXgi. Let 
z = ax+(l—a)y1 0 < c e < l . Then 

*(l;*,«/||*||)-||*-*/INIII 
(3) = (l-a/\\z\\)\\x-(l~cc)/(\\z\\-a)y\\ 

= (l-a/\\z\\)4>((l-<x)/(\\z\\-a);x,y), 
and 

«(1 + 5; *, z/\\z\\) = ||« - (1 + 8)*/||*|| || 

= (l - «(l + a)/||*||) 

• | | * - ( l + 8 ) ( l - a ) / ( | | s | | - ( l + 8 ) a ) y | | 

= (1 - a ( l + S)/||Z||) 

•*((1 + 8)(1 - «) / ( |H| - (1 + fi)a); x, y). 

The limit, as ce—K), of (1— o:)/(||2|| — a) = 1. Hence we may choose 
a > 0 and 5 > 0 so that 

(4) 1 S (1 - «)/(|MI " «) S i, 
and 

1 g (1 + «)(1 - a)/(\\z\\ - (1 + 8)«) g i. 

Then it follows, from (3), (4) and the assumption that <j>ÇK; x, y) is 
constant on the interval [l, d]9 that 
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(5) *(l ;*,s / | |* | | ) - (1 - a/ | |* | | )*(l ;*,y) , 

and 

*(1 + J; x, z/\\z\\) = (1 - «(1 + 8)/||*||)*(l; x, y). 

Since a, ô > 0 , (5) implies that 0 (1 ; x, z/\\z\\)></>(! +8; x, z/\\z\\). This 
contradicts property (P) for the pair (x, z/\\z\\)9 and hence 0(X; x, y) 
is strictly increasing for X è l . Similarly we can show that 0(X; x, y) 
is strictly decreasing for X ^ — 1, and the proof is finished. 

3. Proof of Proposition 2. We may assume that X has dimension 
three. If X is an inner product space, then it is clear that X has prop
erty (P). The proof of the converse is based on a characterization of 
inner product spaces given by Kakutani [5]. Accordingly it is suffi
cient to show that for every two dimensional linear subspace Y of X 
there exists a linear projection P of X onto Y which has norm one. 
To define such a projection, we choose x 0 £ I , x 0 $ F . There exists 
^ o G F s o that ||xo—3>o|| ^ | | ^o~y | | for all y£zY. Let Xi = Xo—y0. Every 
xÇzX may be uniquely decomposed in the form x = axi+y, yÇzY. A 
linear projection P , of X onto F, is then defined by Px = P(axi+y) 
= 3̂ . I t remains to show that P has norm one. We consider an arbi
trary xÇzX with decomposition x — axi+y. If y = 0f \\Px\\=0^\\x\\, 
hence we assume y 5*0. From the construction of x\ and the decom
position of x, there follows: ||#— y\\ = ||Ö!XI|| =S||Û:XI— \y\\ for all X. 
Letting *=( | |x | | / | | '" 

II*-(IMI/IMI)*II ^ l l * - M I f o r aI1 x-Since ||*ll HI*! 
erty (P), this implies ||y||/| |x|| ^ 1 . Hence \Px\ g 
is finished. 

y\\)y, it follows from this inequality that : 
| and X has prop
yl), and the proof 

4. Proof of Proposition 3. We first assume that X has property 
(P) and prove that X has property (J). Suppose, on the contrary, 
that there exist nonzero vectors x and y such that \\x\\ è\\x~-\y\\ 
for all X and such that ||^+Xix|| <| |y| | for some XIT^O. Let 
w = ||y+Xi#||/| |y|| < 1 . The vectors y+\ix and my have equal norms. 
Hence property (P) implies that 0 (1 ; y +Xi#, m y) <<j>(\/m\y+\ix, my). 
This inequality implies that | |#--((m — 1)/Xi)y|| <| |#| | , which is a con
tradiction. 

To show that if X has property (J) then X has property (P), we 
consider an arbitrary pair of nonzero vectors (x, y) such that ||#|| 
= ||y||. Let [Xi, X2] be the finite interval on which 0(X; x, y) achieves 
its minimum. We wish to show that — l ^ X i ^ X 2 ^ l . If Xi=X2 = 0, 
we are finished. If not, let X0T^0 SO that Xi^Xo^X2. Let Xi = x—\oy-
Then ||xi|| ^||#i—Xy|| for all X; and it follows from property (J) that 
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IHI â||y—X^i|| for all X. If in particular we let X= —1/Xo, we may 
conclude that : 

IMI ^ \\y ~ X*i|| = ||y + (lAo)(* ~ Mi l = | 1/Xol NI-

Hence |X0| ^ 1 , and the proof is finished. 
We wish to thank Professor W. V. Petryshyn for calling our atten

tion to this problem. 
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