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1. Statement of the main results. Our primary goal in this note is 
to establish the following proposition. 

THEOREM 1. Consider the Banach space 6» of continuous real-valued 
functions ƒ : En—>R, En standing for the unit cube in n-dimensional Eu-
clidean space. If 0 and \p are any fixed functions of Cn with connected 
level-sets intersecting pairwise in connected sets, then the subspace of 
superpositions a o<j>+b 0$ is closed in Cw under the uniform norm. 

Mark by (£» the indicated space of superpositions. To prove the 
stated theorem, it suffices to verify 

THEOREM 2. Every function of (5n has a best uniform approximation 
in (Bn. 

Distinguish one of the fixed functions, say, \p; denote its level sets 
by l+(t), 

kit) = {pGEni^p) = / } ; 

designate by Lf the aggregate of level sets /̂  = ^( / ) . Finally, set for 
each ƒ G (Bn 

*>(/! h) = max/(p) - min / (p ) , 
pel p£l$ 

co(/| yp) = maxw(/ | Z )̂, 

ju(jf) = inf | |/ - a o <f> - b o \p\\, 

(the properties of the functional co and related topics are investigated 
in [ l ] and [2]. Theorem 2 is proved by means of the five lemmas 
now formulated. 

LEMMA 1. For each /G<Bn, 

/*(ƒ) = \ inf co(/-~ ao<$>\ \p), 
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where 6 stands for the appropriate space of continuous functions of a 
single variable. 

LEMMA 2. The function a o $+/? o \p of (Bn is a best approximation to 
ƒ G Cn if oi minimizes the functional co, 

o)(f — a o <f> | yp) = inf co(/ — a o <j> \ \p)} 

and j8 o ^ is defined for each 1$ as 

jg o yp = | [max( / — a o <£) + min(/" —• a o $). 

Since co measures the oscillation of ƒ on the partition Lf (of En)t 

we agree to call a a best co-approximation of ƒ (see also [3]). 

LEMMA 3. Given a function ƒ'£CW, consider the family f zróew mew-
ôers are defined f or each admitted level set l^{t) to be the restriction of f 
to it: 

f ={ƒ.:ƒ.=ƒ U(0b 
fe£ fcCf &£ an e-net of the family f, then 

inf co(f« — a o <t> | ^) = M ( / ) ^ inf w(fe — a o 01 ^) + €, 

zekere 

co(fe — a o É̂> | ^) = max co(/t — a o <j> \ l+(t)). 
r*€fa 

LEMMA 4. E<zc& finite family f € tes a best (^-approximation. 

LEMMA 5. Corresponding to the members ek>0 of the convergent series 
X)*A, let {f*;} be an ascending chain of €k-nets of f: 

fi C f* C • • • C U C • • • C f. 

TAere w a uniformly convergent sequence of best ^-approximations a* 
to f* w&öse Kmi/ is a 6es£ ̂ -approximation to the f unction f attached to f. 

Theorem 1 was arrived at through an examination of the construc
tions in [2]. Specifically, the first three lemmas above correspond to 
the first three theorems in [2]; Lemma 5 is the counterpart of [2, 
Theorem 4]. The proofs of the preceding lemmas require certain 
modifications of the arguments in [2], based on these facts: 

Given/ , let f€= {fu • • • , fm},ƒ/=ƒ\k(tj), be a fixed €-net of f; let 
fe*> 1 SkSiny consist of the first k elements of fe. 

(i) If ak is a best co-approximation of ƒ«*, then so is ak+c for each 
constant c. 
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(ii) If ak+\ is a best co-approximation of fe*+i, then there is a con
stant c such that for each point p £ ^ ( 4 + i ) , sgnj/^+i— ak+i o <j> — c] 
= sgn [a^+i o<t>+c—ak o<f>], unless fk+i = a/c+i o^+co r^o<t> = ak+i o<j> 
+c 

2. On the choice of <j> and ^. The following propositions are conve
niently formulated with this notation: 

Consider two functions, fa and fa, of (Bn: if L$x is a refinement of 
Lf2, when these are regarded as partitions of En, then we write fay-fa 
(see [ l ]) . Designating now best approximations off in (Bn relative to the 

fixed f unctions <j> and \p by jj,(f; </>, \p), we state 

THEOREM 3. If 02>-0i and fa>-fa, then 

/*(ƒ; fa, fa) à /*(ƒ; 4>h fa) 

for each ƒ £ <5n. 

THEOREM 4. If <j>>-yp, then 

THEOREM 5. For each pÇzEn and i = l, 2, let UiP designate the inter
section of level sets l^. and 1$. containing p (that is, we remove now the 
restriction imposed in the fixed functions in Theorem I). If U2p"DUiP 

for each pG-E», then the conclusion of Theorem 3 remains valid for each 
f Gen. 

Theorem 3 is a generalization of [l, Corollary 3.2]. To prove it, 
consider first the case when ^>i=<^2. Given/ , let {ak} be a sequence 
of members of G such that 

lim <a(f — ak o fa \ fa) = **(ƒ; #2, fa) : 
i-*oo 

clearly, we are guaranteed the existence of such sequences. Owing to 
[l , Corollary 2.1], we have the inequality 

co(f — ak o <j>21 fa) è co(/ — ak o <£21 fa) 

for each fixed k, and consequently this remains true as we let &—><*> ; 
while we are not assured the convergence of the sequence whose mem
bers are co(f—ak o^l^Ai), we can state that 

/*(ƒ; 02, fa) â lim sup o)(f — ak o <£21 ypi). 

If it happens that the right side of this inequality equals fx(f; $2, fa) 
then we have established this case; otherwise, we consider a sequence, 
{ck}, of functions ckÇz®, subject to the specification 
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lim œ(f — ck o tf>21 ̂ ï) « n(f; 4>h ft)-

A comparison of the last two inequalities reveals at once that 

thereby disposing of the case in question. 
The proof of the theorem is completed by applying Lemma 1 above 

to the last inequality, and using the fact that 

/*(ƒ, 0, ^) = inf inf | | / — a o <f> — b o ^|| = inf inf ||ƒ — a o <l> — b o \p\\. 

Theorem 4 follows at once from the fact that under these circum
stances (f> = g ox// for some function g(Ee (see [ l]) . 

Theorem 5 is verified with the basic inequality <a(f\ S) èco(/ | T) 
whenever SZ)T and the fact that if ^ 0 / ^ = 5, then 

M(/|S;*,f) = M/|S). 
In particular, this theorem implies that in order to optimize our best 
approximations, all members of L^ should intersect those of L$ in a t 
most one point. 

In connection with these results we pose this problem : 
I t is well known that certain partitions of En cannot qualify for 

membership in the family of level sets of a continuous function. Thus, 
for example, when L/ — En, then ƒ is a t most continuous almost every
where. We ask, therefore, for necessary and sufficient conditions for a 
partition P of En to admit a function ƒ G G„, such that P = Lf] sim
ilarly, under what circumstances can the function so associated with 
P be continuous merely almost everywhere? 
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