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Barnes [ l] has constructed an example of a commutative semi-
simple normed annihilator algebra which is not a dual algebra. His 
example is not complete and when completed acquires a nonzero 
radical. In this paper we construct an example which is complete. 
The theory of annihilator algebras is developed e.g. in [2]. 

We putai=(l + (l+i) 1i2)~2 for i^l and denote by A0 the algebra 
of doubly infinite sequences a with a; = 0 for all but a finite number 
of values of i, with coordinatewise addition and multiplication. We 
define a norm on A 0 by 

Ml = 3 ( 2 : |a n | 2 ) 2 + 3sUP &n&n " / .j &j 

This is easily seen to be a linear space norm on Ao and we have that 
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The submultiplicative property of ||-|| follows easily from (i), (ii) 
and (iii). 

Consider now the space Z2( — °°, 0)©c(l , °o)> which we consider 
as a space of doubly infinite sequences, with norm as the sum of the 
k norm and the sup norm. For a£^4 0 define T0 a by 

(T0a)n = 3x'2an for n^O, 

__! o 
= 3anan — 3 ]T) ai f° r ^ > 0. 

To is then a linear isometry; AQ—»Z2( — °°, 0) ©c(l, <*>). The multiplica
tive linear functional on A 0 are 

<£»(a) = 0» 

and if the functionals \f/i on k®c are defined by 

He) = a/Vi* for i ^ 0, 

= (ci + (31'2) 2 cy)a</3 for * > 0, 

then the ^ are continuous and T*ypi=<l>i. The set {\[/i; i £ Z } is 
clearly total on Z20c. 

Let now 4̂ be the completion of A0; To extends to an isometry 
T; A—>h@c, the 4>% extend to multiplicative linear functionals on A 
and <t>i=T*\f/i. Since the \pi are total on Z2©c, the <£»• are total on A 
and A is a semisimple Banach algebra. Writing di=<t>i(a) for at—A 
we can consider the elements of A as doubly infinite sequences and 
the two ways in which an element of A 0 becomes a sequence give the 
same sequence. 

If hi is the sequence in A0 with (ô»-)i = ô»y (the Kronecker symbol) 
then aôi = diôi for all a in 4̂ so that if / is an ideal in A either 8,-£ J 
or 8 t / = {0}. Thus if / is a closed ideal in A with zero annihilator then 
all the 8i are in J , A0C.J and J = ^4. Hence 4̂ is an annihilator algebra. 

The span J0 of the set {5»; i > 0 } is an ideal in 4̂ and thus so is its 
closure J. The annihilator of J is 

i£ = {b: bE A,bi = 0iori> 0} 

and the annihilator of X" is 

J = {c: c£ A, a = Ofor i ^ 0J. 

The norm on J is given by ||c|| = sup|c»-/a»| and since an~o(cLn) 
as #—>oo for aÇzJo we have an = (?(ajw) for a£J" . Define a sequence xn 

from ^40 by 



1967] A BANACH ALGEBRA WHICH IS NOT DUAL 409 

(*n)i = - 1 / 0 * + 1 ) , - n ^ i Û 0, 

= 0, i < — n, 

= f 1 + £ aw J a{, i> 0. 
.7' 

Then, since the supremum term is 0, 
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= 3(w + l ) " 1 ' 2 + 3 0 + I)"1 '2 , 

so that xn converges to a limit y m A. We have 

j t - = lim Xni = 0, if i ^ 0, 
n 

= ai, if i > 0. 

Clearly yÇ:J but yi = ai9^0 (aï) so t h a t y » $ 7 , the ideal / is not an 
annihilator and A is not a dual algebra. 

The question of the existence of simple annihilator Banach algebras 
which are not dual remains open! 
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