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In [4], Ryll-Nardzewski gave what he called an 'old-fashioned' 
proof of his famous fixed point theorem. The purpose of the present 
note is to give an even more old-fashioned proof of the fixed point 
theorem. In fact, our proof uses nothing more than a category argu
ment and the classical Krein-Milman theorem. Our terminology and 
notation shall be those of Kelley, Namioka et al. [2]. The following 
geometric lemma is essential to our proof of Ryll-Nardzewski's fixed 
point theorem. In case the space E and the pseudo-norm p in the 
lemma are a Banach space and its norm respectively, the lemma is an 
easy consequence of Lindenstrauss' work [3].1 

LEMMA. Let (£, 3) be a locally convex Hausdorff linear topological 
space, let K be a nonempty ^-separable, weakly compact, convex subset 
of E, and let p be a continuous pseudo-norm on E. Then for eacheX), 
there is a closed convex subset C of K such that CT^K and p-di&m(K~C) 
ge , where Jor any subset X of E, p-diam(X) ==sup{p(x--y):x,yÇzX}. 

PROOF. Let 5 = {x: p(x)^e/4:} ; then 5 is a weakly closed convex 
body. Let D be the weak closure of the set of all extreme points of K. 
Since K is 3-separable, a countable number of translates of S cover K 
and hence D. Since D is weakly compact, it is of the second category 
in itself with respect to the relative weak topology. Therefore there 
are a point k of K and a weakly open subset W of E such that 
(S+k)r\DDWr\D^0. Let KX be the closed convex hull of D~W, 
and let K.% be the closed convex hull of DC\W. Then, by the Krein-
Milman theorem and the compactness of K\ and K^ K. is the convex 
hull of K1UK1. Furthermore Ri^K. For, otherwise, by Theorem 
15.2 of [2], D~W would contain all the extreme points of Ky con
tradicting the fact that WC\D^0. Obviously £-diam(J£2) = 6 / 2 -
Now let r be a real number in (0, l ] and let ƒ, be the map 
KiXK2X[r, l]—»i£ defined by fr(x%, X2, X)=X#i+(l— X)x%. Then 
clearly the image CV of fr is weakly closed, and it is easy to check that 

1 After the draft of the present note was completed we learned that Professor 
J. L. Kelley knew independently that a lemma of this sort was needed for a proof of 
Ryll-Nardzewski's fixed point theorem. Thus he was able to give a short proof of the 
fixed point theorem for Banach spaces using Lindenstrauss* result. 
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Cr is convex. Moreover C^K. For, if Cr~K, then each extreme 
point z of K is of the form z=\xi+(l— X)#2, #*£i£t-, X £ [rt l ] . This 
would imply that each extreme point of K is in Ki or K = K\, con
tradicting K\9^Kt Finally, if yÇzK~Cr, then y is of the form y=\xi 
+ (1—-X)x2, x&Ki, XG[0, r). I t follows that £(y--x2) =\p(xi—x2) 
^rd, where d = p-diaim(K) < oo. Since £-diam (K2)^e/2, we have 
p-didLm(K~Cr)Se/2+2rd. Therefore if we let C=Cr for r = e/4d, 
the proof of the lemma is complete. 

Let Q be a subset of a locally convex space E and let S be a semi
group of transformations of Q into Q. The semigroup S is called non-
contracting if 0 does not belong to the closure of {Tx — Ty: T C s } 
whenever X9^y and x, yÇzQ. Clearly S is noncontracting if and only 
if, for x, y(EQ with X5*y, there is a continuous pseudo-norm p (de
pending on x and y) on E such that inf {p(Tx — Ty): T&} > 0 . 

THEOREM (RYLL-NARDZEWSKI). Let Q be a nonempty, weakly com
pact, convex subset of a locally convex Hausdorff linear topological space 
E, and let S be a noncontracting semigroup of weakly continuous affine 
maps of Q into itself. Then there is a common fixed point of S in (?. 

(The following proof is not the most direct one. However it estab
lishes an additional interesting fact concerning fixed points, also due 
to Ryll-Nardzewski [4]: When S is finitely generated, the problem 
of finding a common fixed point of S can be reduced to that of a 
single operator.) 

PROOF. By a familiar compactness argument, it is sufficient to 
prove that each finite subset of S has a common fixed point in Q. 
Therefore we may assume that S is generated by Ti, T2f • • • , Tr. 
Let TQ= (T1+T2+ • • • +Tr)/r. Then T0 is a weakly continuous affine 
map of Q into itself; hence there is a fixed point x0 of T0 in Q (see, for 
example, Théorème 1, Appendice of [ l ]) . We will show that T {XQ — Xo 
for i ~ 1, • • • , r. Assume that this is not the case. Then by throwing 
out those 77s for which T&O — XQ, we may assume that TiXo^Xo 
for i = l, 2, • • • , r.2 Since S is noncontracting there is a continuous 
pseudo-norm p on E and e > 0 such that 

(*) p(TTiX0 - Tx0) > € for all T in S and i = 1, • • • , r. 

Let K be the closed convex hull of { TXQ: T&}. Then K is a weakly 
compact, convex, separable subset of E. Hence, by the lemma, 
there is a closed convex subset C of K such that CT*K and 

2 Indeed if TiXo^xo for i<m and TiXo — xo for i>m, then substitute TV 
= (Ti-jr • • • +!Tm)/mand the subsemigroupS'of S generated by Tu • • • , Tmîor To 
and S respectively. Note that TVtfo t̂fo. 
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p-diam(K~C) ^ e . Since CV-K, there is an element S in S such that 
Sxo(EK~C. From TQXO — XO, we see that 

Sxo= (ST1X0+ST2X0+ • • • +STrx0)/r. 

Hence ST{XQCZK~C for at least one i, since otherwise Sx 0 £C. It 
follows that p(STiXo-Sxo) ^p-diam(K~C) St, contradicting in
equality (*). The proof of the theorem is therefore complete. 

REMARK. In the proof above To could have been any convex com
bination 2i.iX»-r< with X,->0. 
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