DUALITY METHODS AND PERTURBATION OF SEMIGROUPS

BY R. T. MOORE1

Communicated by M. H. Protter, February 15, 1967

- 1. Introduction. In [5], the author announced several theorems applying the semi-inner product methods of Lumer and Phillips [4] to the perturbation theory of one-parameter holomorphic contraction semigroups on Banach spaces. This note extends the methods to a perturbation theorem of Trotter [9], with proofs, and announces generalizations to locally convex spaces. (See also Kato [3].)
- 2. Generation theorem, ϕ -sectorial operators. Let \mathfrak{X} be a complex Banach space, and let $[\ ,\]: \mathfrak{X} \times \mathfrak{X} \to C$ be a semi-inner product for \mathfrak{X} , in the sense of [4]: (i) for all $v \in \mathfrak{X}, u \to [u, v]$ is a linear functional on \mathfrak{X} , (ii) $[u, u] \geq 0$ for all $u \in \mathfrak{X}$, with $||u|| = [u, u]^{1/2}$, and (iii) |[u, v]| < ||u|| ||v||.

DEFINITION 1. A linear operator A with domain $\mathfrak{D}(A) \subset \mathfrak{X}$ is ϕ -sectorial for $0 \le \phi \le \pi/2$ iff for every $u \in \mathfrak{D}(A)$,

(1)
$$\tan \phi |\operatorname{Im}[Au, u]| \leq -\operatorname{Re}[Au, u] \geq 0.$$

Every ϕ_1 -sectorial operator is ϕ_2 -sectorial for all $\phi_2 \leq \phi_1$, and every 0-sectorial operator is dissipative (Re $[Au, u] \leq 0$ as in [4]). If $\phi = \pi/2$, replace the first inequality by Im [Au, u] = 0. If $\Delta_{\phi} = \{z \mid \pi \geq |\arg z| \geq \pi/2 + \phi\}$, and $W(A) = \{[Au, u] \mid u \in \mathfrak{D}(A), ||u|| = 1\}$ is the numerical range of A then A is ϕ -sectorial iff $\Delta_{\phi} \supset \{W(A)\}^-$ (obvious when sketched).

DEFINITION 2. A one-parameter semigroup T is in the family $CH(\phi)$ of holomorphic contraction semigroups on the sector $S_{\phi} = \{z \mid |\arg z| \leq \phi\}$ iff

- (a) T is a homomorphism of the additive semigroup of S_{ϕ} into the multiplicative semigroup $\mathfrak{C}(\mathfrak{X})$ of all contraction operators on \mathfrak{X} $(||T(z)|| \leq 1)$,
- (b) $z \to T(z)$ is a holomorphic function from $\operatorname{int}(S_{\phi})$ to $\mathfrak{C}(\mathfrak{X}) \subset \mathfrak{L}(\mathfrak{X})$, the Banach algebra of bounded operators on \mathfrak{X} (see [2, Chapter 5]), and
- (c) (slightly redundant) for all $u \in \mathfrak{X}$, the map $z \to T(z)u$ is continuous from S_{ϕ} into \mathfrak{X} .

¹ Research supported in part by NSF Contract GP 5585.

(d) Then the (infinitesimal) generator A of T is defined, for all $u \in \mathfrak{X}$ where the limit through real h exists, by

(2)
$$Au = \lim_{h \to 0} h^{-1} \{ T(h)u - u \}.$$

Theorem 1. An operator A is the infinitesimal generator of a $CH(\phi)$ semigroup T iff

- (a) A is closed, densely defined, and φ-sectorial, and
- (b) $\rho(A) \cap (\mathbf{C} \sim \Delta_{\phi}) \neq \emptyset$, where $\rho(A)$ is the resolvent set.

LEMMA A. A is ϕ -sectorial iff $e^{i\theta}A$ is dissipative for all $0 \le |\theta| \le \phi \le \pi/2$.

Proof.

(3)
$$\operatorname{Re}[e^{i\theta}Au, u] = \operatorname{Re}(e^{i\theta}[Au, u]) \\ = \cos\theta \operatorname{Re}[Au, u] - \sin\theta \operatorname{Im}[Au, u].$$

Since all such $\cos \theta$ are positive, $e^{i\theta}A$ is dissipative and (3) is negative for all $u \in \mathfrak{D}(A)$ iff, dividing by $-\cos \theta$,

(4)
$$0 \le -\operatorname{Re}[Au, u] \ge \operatorname{Im}[Au, u] \tan \theta.$$

Since $\tan \theta$ is monotone increasing, this holds for all θ in the specified range iff it holds for $\theta = \pm \phi$, depending upon the sign of Im[Au, u]. This last is equivalent to (1).

LEMMA B. Suppose A is ϕ -sectorial, $u \in \mathfrak{D}(A)$, and $z \notin \Delta_{\phi}$. Then

(5)
$$||(z-A)u|| \ge d(z, \Delta_{\phi})u,$$

where $d(z, \Delta_{\phi})$ is the distance from z to Δ_{ϕ} .

PROOF. Clearly if $\left|\arg z\right| \leq \phi$, $d(z, \Delta_{\phi}) = \left|z\right|$. Then

(6)
$$\begin{aligned} \left\| (z-A)u \right\| &= \left\| \exp(i\arg z)(\left| z \right| - \exp(-i\arg z)A)u \right\| \\ &= \left\| (\left| z \right| - \exp(-i\arg z)A)u \right\|. \end{aligned}$$

But here $\exp(-i \arg z)A$ is dissipative by Lemma 2, and a calculation from [4] yields for any dissipative B and $z_0 \in \mathbb{C}$:

$$Re(z_0)||u||^2 = Re[z_0u, u] \le Re([z_0u, u] - [Bu, u])$$

$$\le |[(z_0 - B)u, u]| \le ||(z_0 - B)u|| ||u||.$$

Cancelling ||u|| and applying this with $z_0 = |z|$, $B = \exp(-i \arg z)A$,

(8)
$$||(z - A)u|| \ge \text{Re}(z_0)||u|| = |z| ||u|| = d(z, \Delta_{\phi})||u||$$

by (6).

But if $\phi \leq |\arg z| \leq \pi - \phi$, trigonometry shows that

(9)
$$d(z, \Delta_{\phi}) = \cos(\arg z - \phi) |z|.$$

Then $e^{-i\phi}A$ is dissipative by Lemma 2 and by the same procedure with $z_0 = \exp(i(\arg z - \phi))|z|$, $B = e^{-i\phi}A$,

(10)
$$\begin{aligned} \left\| (z - A)u \right\| &= \left\| e^{i\phi} \left\{ \exp(i(\arg z - \phi)) \mid z \mid - e^{-i\phi} A \right\} u \right\| \\ &= \left\| (\exp(i(\arg z - \phi)) \mid z \mid - e^{-i\phi} A) u \right\| \\ &\geq \operatorname{Re}(\exp(i(\arg z - \phi)) \mid z \mid) \|u\| \\ &= \cos(\arg z - \phi) \mid z \mid \|u\| = d(z, \Delta_{\phi}) \|u\|. \end{aligned}$$

LEMMA C. If (5) holds and A is closed $\rho(A)$ either is disjoint from $\mathbf{C} \sim \Delta_{\phi}$ or contains $\mathbf{C} \sim \Delta_{\phi}$ (the complement of Δ_{ϕ} in \mathbf{C}).

PROOF. If $z_0 \in \rho(A) \cap (\mathbf{C} \sim \Delta_{\phi})$ then (5) yields

(11)
$$||(z_0 - A)^{-1}|| \leq d(z_0, \Delta_{\phi})^{-1}.$$

Then the argument of [10, Theorem VIII.2.1], with this estimate, shows that for z in the open disc about z_0 tangent to Δ_{ϕ} ($|z_0-z|$ $< d(z_0, \Delta_{\phi})$), $z \in \rho(A)$, with the Neumann expansion

(12)
$$(z-A)^{-1} = \sum_{k=0}^{\infty} (z_0-z)^k (z_0-A)^{-(k+1)}.$$

Any nonempty subset of $C\sim\Delta_{\phi}$ containing a Δ_{ϕ} -tangent disc about each of its members exhausts $C\sim\Delta_{\phi}$ (induction).

LEMMA D (HILLE). Let T be any strongly continuous semigroup on S_{ϕ} whose restriction to $\operatorname{int}(S_{\phi})$ is in $H(\phi, \phi)$ ([2, Definition 10.6.1, p. 325]), and whose generator is A. Then for $|\theta| \leq \phi$, $t \rightarrow T_{\theta}(t) = T(e^{i\theta}t)$ is a semigroup of class C_0 with generator $A_{\theta} = e^{i\theta}A$. If $T \in CH(\phi)$, then $T_{\theta} \in CH(0)$ and $e^{i\theta}A$ is dissipative for $|\theta| \leq \phi$.

PROOF. The argument of Lemma 10.6.2 and the first part of the proof of Theorem 12.8.1 in [2] yields finite constants M_{ϕ} and ω_{ϕ} with

$$||T(e^{i\theta}t)|| \leq M_{\phi}e^{\omega t}.$$

Then the deformation-of-contours argument on page 384 of [2] leads to the following rewording of 12.8.4:

$$(14) \quad (\lambda - A)^{-1}u = e^{i\theta} \int_0^\infty e^{-\lambda e^{i\theta}t} T(e^{i\theta}t) u dt = e^{i\theta} (e^{i\theta}\lambda - A_{\theta})^{-1}u \equiv v.$$

For such a v (these exhaust $\mathfrak{D}(A) = \mathfrak{D}(A_{\theta})$)

$$e^{i\theta}Av = -e^{i\theta}(\lambda - A)v + e^{i\theta}\lambda v = -e^{i\theta}u + e^{i\theta}\lambda v$$

$$= -e^{i\theta}u + (e^{i\theta}\lambda - A_{\theta})v + A_{\theta}v$$

$$= -e^{i\theta}u + e^{i\theta}u + A_{\theta}v = A_{\theta}v.$$
(15)

substituting twice and cancelling.

If T consists entirely of contractions, so does T_{θ} , hence Theorem 3.2 of [4] applies to prove that $e^{i\theta}A = A_{\theta}$ is dissipative.

PROOF OF THEOREM 1. If $T \in CH(\phi)$, every $e^{i\theta}A$ is dissipative by Lemma D, for $|\theta| \leq \phi$, so A is ϕ -sectorial by Lemma A. By Theorem 3.2 of [4] again, since T_0 is a contraction semigroup, $A_0 = A$ is closed, densely defined, and has $1 \in \rho(A) \cap C \sim \Delta_{\phi}$. Hence (a) and (b) hold.

Suppose (a) (especially $A \phi$ -sectorial) and (b), so that by Lemmas B and C and equation (5),

(16)
$$||(z-A)^{-1}|| \leq d(z, \Delta_{\phi})^{-1}.$$

Then Hille's Theorem 12.8.1 of [2] shows that A generates a $H(-\phi, \phi)$ semigroup T^h on $\operatorname{int}(S_\phi)$. Applying Lemma D to closed subsectors, and Lemma 1 to see that $e^{i\theta}A$ is dissipative, it follows that all $T^h(e^{i\theta}t)$ are contractions by Theorem 3.2 of [4]. It remains to show that the contraction semigroups generated by $e^{\pm i\phi}A$ extend T^h to all of S_ϕ , forming a $CH(\phi)$ semigroup T. All T_θ generated by $e^{i\theta}A$ for $|\theta| \leq \phi$ leave the common $\mathfrak{D}(A) = \mathfrak{D}(e^{i\theta}A)$ invariant, are differentiable on it and commute with A (Theorem 10.3.3 of [2]). If $u \in \mathfrak{D}(A)$,

$$T_{\pm\phi}(t)u - T_{\theta}(t)u = \int_{0}^{t} \frac{d}{ds} \left(T_{\pm\phi}(s)T_{\theta}(t-s)u\right)ds$$

$$= \int_{0}^{t} T_{\pm\phi}(s)\left(e^{\pm\phi}A - e^{i\theta}A\right)T_{\theta}(t-s)uds$$

$$= \left\{e^{\pm i\phi} - e^{i\theta}\right\} \int_{0}^{t} T_{\pm\phi}(s)T_{\theta}(t-s)Auds.$$

Since the T's are contractions, the last integral is smaller than t||Au|| and, as $\theta \to \pm \phi$, $T_{\theta}(t)u \to T_{\pm \phi}(t)u$ uniformly on t-compacta, allowing a continuous extension of $z \to T^h(z)u$ to S_{ϕ} . By $3 - \epsilon$, this extends to all $u \in X$, and the semigroup property extends by limits as well, to create a $T \in CH(\phi)$.

3. The perturbation theorems.

THEOREM 2. (a) If A and B are ϕ -sectorial, and α and β nonnegative, then $D = \alpha A + \beta B$ is ϕ -sectorial (see [8]).

- (b) If $\{A_{\alpha} | \alpha \in I\}$ is a net of ϕ -sectorial operators, and D is defined, for all u where the limit exists in $\bigcap \{\mathfrak{D}(A_{\alpha}) | \alpha \in I\}$, by $Du = \lim A_{\alpha}u$, then D is ϕ -sectorial.
- PROOF. (a) If $u \in \mathfrak{D}(A) \cap \mathfrak{D}(B)$, $[(\alpha A + \beta B)u, u] = \alpha [Au, u] + \beta [Bu, u]$. Then $W(\alpha A + \beta B) \subset \alpha W(A) + \beta W(B) \subset \Delta_{\phi}$ since Δ_{ϕ} is a cone; the same applies for closures since Δ_{ϕ} is closed (Def. 1 *et seq.*).
- (b) $[Du, u] = [(D-A_{\alpha})u, u] + [A_{\alpha}u, u]$ and $|[(D-A_{\alpha})u, u]| \le ||(D-A_{\alpha})u|| ||u|| \to 0$; so $[Du, u] = \lim [A_{\alpha}u, u]$, and the same applies to real and imaginary parts, so (1) for D follows from (1) for the A_{α} .
- THEOREM 3. Suppose D in Theorem 2 (a) or (b) is densely defined, and for some $z_0 \notin \Delta_{\phi}$, range (z-D) is dense. Then \overline{D} exists and generates a $CH(\phi)$ semigroup.

PROOF. All $e^{i\theta}D$ for $|\theta| \leq \phi$ are dissipative by Lemma A. Theorem 3.3 of [4] insures that \overline{D} exists, and an easy modification of the proof of their Lemma 3.4 shows that a new semi-inner product can be chosen making all $e^{i\theta}\overline{D}$ dissipative at once, so \overline{D} becomes ϕ -sectorial. Then as in Theorem VIII.1.1 of [10, p. 209], $z_0 \in \rho(\overline{D})$ and Theorem 1 applies.

The following can supply the range condition:

- (DA) D has a densely defined dissipative adjoint D^* ; e.g. in (b) the net $\{A_{\alpha}^* | \alpha \in I\}$ consists of dissipative operators converging on a dense subset of \mathfrak{X}^* (see Corollary 3.2 in [4]).
- (G) In (a), $\mathfrak{D}(A) \subset \mathfrak{D}(B)$ and for some a < 1 and $b \ge 0$, $||Bu|| \le a||Au|| + b||u||$ for all $u \in \mathfrak{D}(A)$ (see [1]).

THEOREM 4. If $\{A_{\alpha} | \alpha \in I\}$ is a net of generators of $CH(\phi)$ semigroups T_{α} with a limit D satisfying Theorem 3 (or (DA)) then \overline{D} generates a $CH(\phi)$ semigroup T which is the uniform strong limit on compacta in S_{ϕ} of the T_{α} .

PROOF. We already know that T exists and that $C\sim\Delta_{\phi}\subset\rho(\overline{D})$. The usual argument for the Trotter-Kato theorem (see [10, p. 270–271]) can then be shortened considerably because the limit semigroup T and limit resolvents $(z-\overline{D})^{-1}$ are already known to exist, but essentially the same reasoning is used to prove uniform convergence on compacta. (The novelty lies in the treatment of the cases $\phi\neq 0$ and the avoidance of ergodic theorems for pseudoresolvents. For another proof, see [7].)

4. Generalizations. If a family Γ of seminorms p calibrates (gives a locally convex topology to) a complex vector space \mathfrak{X} , there is a

Lumer structure $\Lambda = \{ [,]_p | p \in \Gamma \}$ for \mathfrak{X} consisting of indefinite semiinner products with $[u, u]_p^{1/2} = p(u)$. A is ϕ -sectorial for Λ if it is ϕ -sectorial for every $[,]_p$, and T(z) is a contraction iff for all $u \in \mathfrak{X}$ and $p \in \Gamma$, $p(T(z)u) \leq p(u)$. If "holomorphic" is taken to mean " $z \to \langle u^*, T(z)u \rangle$ is holomorphic for all $u^* \in \mathfrak{X}^*$," the entire theory presented above can be generalized. Furthermore, every equicontinuous semigroup creates a Γ for which it is a contraction semigroup (see $[\mathbf{6}]$), and it turns out that the results given in Chapter IX of $[\mathbf{10}]$, along with several new theorems, can be obtained in this way. Details will appear in $[\mathbf{7}]$.

BIBLIOGRAPHY

- 1. K. Gustafson, A perturbation lemma, Bull. Amer. Math. Soc. 72 (1966), 334-338.
- 2. E. Hille, and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Pub., vol. 31 Amer. Math. Soc., Providence, R.I., 1957.
- 3. T. Kato, *Perturbation theory for linear operators*, Springer-Verlag, New York, 1966, (see pp. 495 and 502).
- 4. G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679-698.
- 5. R. T. Moore, Duality methods in the perturbation of holomorphic semigroups, Notices Amer. Math. Soc. 13 (1966), 554 (Abstract 636-98).
- 6. ——, Contractions, equicontinuous semigroups, and Banach algebras of operators on locally convex spaces, (in preparation).
- 7. ——, Contractions, perturbations, and Lumer structures on locally convex spaces, (in preparation).
- 8. E. Nelson, Feyman integrals and the Schrödinger equation, Appendix B, J. Math. Phys. 5 (1964), 332-343.
- 9. H. F. Trotter, Approximation of semigroups of operators, Pacific J. Math. 8 (1958), 887-919.
 - 10. K. Yosida, Functional analysis, Academic Press, New York, 1965.

University of California, Berkeley