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1. Introduction. In [5], the author announced several theorems 
applying the semi-inner product methods of Lumer and Phillips [4] 
to the perturbation theory of one-parameter holomorphic contraction 
semigroups on Banach spaces. This note extends the methods to a 
perturbation theorem of Trotter [9], with proofs, and announces 
generalizations to locally convex spaces. (See also Kato [3].) 

2. Generation theorem, 0-sectorial operators. Let 36 be a complex 
Banach space, and let [ , ] : 36X36—»C be a semi-inner product for 36, 
in the sense of [4]: (i) for all z/£ 36, #—»[«, v] is a linear functional on 
36, (ii) [u, u]*tO for all wG 36, with ||w|| = [u, u]112, and (iii) | [u, v]\ 

<\\4 y . 
DEFINITION 1. A linear operator A with domain 3)(^4)C 36 is <£-

sectorial for 0^<£^7r/2 iff for every w£S)(^4), 
(1) tan <f>\ Im[Au, u] \ S — Re[Au, u] à 0. 

Every </>i-sectorial operator is 02-sectorial for all $2^<£i, and every 
0-sectorial operator is dissipative (Re [Au, u]^0 as in [4]). If 
$ = 7T/2, replace the first inequality by Im [Au, u]=0. If A^= {z\w 
â | a r g s | è i r / 2 + 0 } , a n d W(A) = {[Au, u]\ uE£>(A), \\u\\ = l } is the 
numerical range of A then A is ^-sectorial iff A^ { W(A)}~ (obvious 
when sketched). 

DEFINITION 2. A one-parameter semigroup T is in the family 
CH(<f>) of holomorphic contraction semigroups on the sector S<t> 
= {*| | a r g z | : g 0 } iff 

(a) T is a homomorphism of the additive semigroup of S<t> into the 
multiplicative semigroup 6(36) of all contraction operators on 36 

(!lnz)ND, 
(b) z—>T(z) is a holomorphic function from int(S^) to6( 36) C<£( #), 

the Banach algebra of bounded operators on 36 (see [2, Chapter 5]), 
and 

(c) (slightly redundant) for all w £ ï , the map z-*T(z)u is continu­
ous from St into 36. 

1 Research supported in part by NSF Contract GP 5585. 
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(d) Then the (infinitesimal) generator A of T is defined, for all 
^ G 36 where the limit through real h exists, by 

(2) Au = Hm hrl{ T(h)u - u). 
ft\0 

THEOREM 1. An operator A is the infinitesimal generator of a CH{<f>) 
semigroup T iff 

(a) A is closed, densely defined, and </>-sectorial, and 
(b) p(A)r\(C~A<i)) 7*0, where p(A) is the resolvent set. 

LEMMA A. A is <j>-sectorial iff eidA is dissipative f or all Org |0 | g $ 

PROOF. 

Re[e»Au, u] = Re(eid[Au, «]) 

= cos 6 Re[Au, u] — sin 0 Im[Au, u]. 

Since all such cos B are positive, eidA is dissipative and (3) is negative 
for all uÇz£>(A) iff, dividing by --cos0, 

(4) 0 g — Re[Au, u] à Im[Au, u] tan 0. 

Since tan 6 is monotone increasing, this holds for all B in the specified 
range iff it holds for B= ±<f>, depending upon the sign of Im[Au, u]. 
This last is equivalent to (1). 

LEMMA B. Suppose A is (^-sectorial, uÇES)(A), and zÇ£A+. Then 

(5) | | ( * - ^ ) « | | *d(z9A*)u, 

where d(z, A$) is the distance from z to A0. 

PROOF. Clearly if | arg z\ S<f>, d{z, A0) = | z\. Then 

||(z — A)u\\ = ||exp(i arg2)( | z\ — exp(—i arg s)^4)^|| 

= | | ( | 21 - exp(- ia rgs) ;4)« | | . 

But here exp(—i arg z)A is dissipative by Lemma 2, and a calculation 
from [4] yields for any dissipative B and SoEC: 

Re(s0)||^||2 = Re[z0u, U] S Re([z0u, u] — [Bu, u]) 

(7) S I [(zo-B)u,u]\ ^\\{zQ-B)u\\\\u\\. 

Cancelling ||ft|| and applying this with z0= \ z\, B =exp(—i arg s)^4, 

(8) ||(* - 4)« | | â Re(,o)|h|| = \z\ ||«|| = <*(*, A*)|H| 

by (6). 
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But if (j>S I arg z\ ^T— <j>, trigonometry shows that 

(9) d(z, A )̂ = cos(arg z — <£) \ z\. 

Then e~i*A is dissipative by Lemma 2 and by the same procedure 
with 20 = exp(i(arg z~4>))\z\, B = e~l^A, 

||(z — A)u\\ = ||e*>{exp(i(arg z — </>)) | z\ — ér*M}w|| 

= ||(exp(i(arg s - *)) | *| - *-*M)«|| 

^ Re(exp(i(arg 2 — <£)) | z\ )\\u\\ 

= cos(arg z - 4>)\z\ \\u\\ = d(z, A*)||«||. 

LEMMA C. If (5) holds and A is closed p(A) either is disjoint from 
C^Aj, or contains C^Aj, (the complement of A^ in C). 

PROOF. If s o G p ( ^ ) n ( C ^ A 0 ) then (5) yields 

(11) IKio- i lHI ^d(z0,A*)-\ 

Then the argument of [10, Theorem VIII.2.1], with this estimate, 
shows that for z in the open disc about z0 tangent to A0 (| ^0 — s| 
<d(z0, A0)), zE:p(A)y with the Neumann expansion 

(12) (z - A)-' = £ (s0 - *)*(*o ~ ,4)-<*+1). 

Any nonempty subset of C^A^ containing a A^-tangent disc about 
each of its members exhausts C^A^ (induction). 

LEMMA D ( H I L L E ) . Let T be any strongly continuous semigroup on 
S<f> whose restriction to int^S^) is in H(<f>, </>) ([2, Definition 10.6.1, 
p. 325]), and whose generator is A. Then for \d\ ?i<f>, t—*T$(t) = T(eiet) 
is a semigroup of class C0 with generator A$ — ei9A. If T(ECH(</>), then 
TeCzCH(0) and eieA is dissipative for \d\ ^<t>. 

PROOF. The argument of Lemma 10.6.2 and the first part of the 
proof of Theorem 12.8.1 in [2] yields finite constants M<f> and cô  with 

(13) l|r(«**)H s M***. 

Then the deformation-of-contours argument on page 384 of [2] leads 
to the following rewording of 12.8.4: 

e-xe* tT(e*t)udt = ei9(ei9X - A9)~
lu = v. 

o 

For such a v (these exhaust £)(A) = £>(A$)) 
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e^Av = —e^Qi — A)v + e^Xv = —eieu + ei9Xv 

= -e»u+ (e^X - Ae)v + Aev 
(15) 

= — e% + eïdu + Aev = Aev, 

substituting twice and cancelling. 
If T consists entirely of contractions, so does Te, hence Theorem 3.2 

of [4] applies to prove that eieA =Ae is dissipative. 
PROOF OF THEOREM 1. If TÇECH(</>), every ei9A is dissipative by 

Lemma D, for |0 | g<£, so A is ^-sectorial by Lemma A. By Theorem 
3.2 of [4] again, since T0 is a contraction semigroup, A0 = A is closed, 
densely defined, and has l(E:p(A)r\C~A<f,. Hence (a) and (b) hold. 

Suppose (a) (especially A ^-sectorial) and (b), so that by Lemmas 
B and C and equation (5), 

(16) \\(z - A)-i\\ £ d(z, à*)-K 

Then Hille's Theorem 12.8.1 of [2] shows that A generates a H{—<f>, <f>) 
semigroup Th on intOS^). Applying Lemma D to closed subsectors, 
and Lemma 1 to see that ei9A is dissipative, it follows that all 
Th(eiet) are contractions by Theorem 3.2 of [4]. I t remains to show 
that the contraction semigroups generated by e±l*A extend Th to all 
of S^ forming a CH(<j>) semigroup T. AU Te generated by eidA for 
\d\ ^ 0 leave the common £>(A) = £>(ei6A) invariant, are differenti­
a t e on it and commute with A (Theorem 10.3.3 of [2]). If u(E£>(A), 

Cl d 
T±<t>(t)u - TQ{t)u = I — (T±4>(s)Te(t - s)u)ds 

J 0 ds 

(17) = f T±*(s)(e£+A-e»A)T9(t-s)uds 
J 0 

= {*fc<* - e»} f T±t(s) Te(t - s)Auds. 
Jo 

Since the T's are contractions, the last integral is smaller than /||^4w|| 
and, as 0—>±<£, Te(t)u—>T±<j>(t)u uniformly on /-compacta, allowing a 
continuous extension of z-^Th{z)u to S+. By 3 —€, this extends to 
all w £ X , and the semigroup property extends by limits as well, to 
create a TÇzCH(<[))> 

3. The perturbation theorems. 

THEOREM 2. (a) If A and B are ^-sectorial, and a and /3 nonnegative, 
then D = aA+f3B is <j>-sectorial (see [8]). 
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(b) If {Aa\oiÇzl} is a net of <j>-sectorial operators, and D is defined, 
for all u where the limit exists in H {£>(Aa)\a(El}, by Du = lim Aau, 
then D is ^-sectorial. 

PROOF, (a) If uG£>(A)C\S>(B), [(aA+l3B)u, u]=a[Au, u] 
+p[Bu, u]. Then W(aA+$B) CaW(A)+(3W(B)CA<i> since A* is a 
cone; the same applies for closures since A^ is closed (Def. 1 et seq.). 

(b) [Du, u]= [(D — Aa)u, u]+[Aau, u] and j [(D — A«)u, u]\ 
1*11 (Z>—Aa)u\\ \\u\\—»0; so [Du, u]=^\\m[Aau, u\% and the same ap­
plies to real and imaginary parts, so (1) for D follows from (1) for 
the Aa. 

THEOREM 3. Suppose D in Theorem 2 (a) or (b) is densely defined, 
and for some ZQ^A^, range (z — D) is dense. Then D exists and generates 
a CH(<j>) semigroup. 

PROOF. All ei9D for |ö | ^<j> are dissipative by Lemma A. Theorem 
3.3 of [4] insures that D exists, and an easy modification of the proof 
of their Lemma 3.4 shows that a new semi-inner product can be 
chosen making all ei6D dissipative at once, so D becomes ^-sectorial. 
Then as in Theorem VIII.1.1 of [10, p. 209], zQGp(D) and Theorem 1 
applies. 

The following can supply the range condition : 
(DA) D has a densely defined dissipative adjoint D*; e.g. m (b) 

the net { ^ « l a G / } consists of dissipative operators converging on a 
dense subset of X* (see Corollary 3.2 in [4]). 

(G) In (a), £>(A)C$>(B) and for some a<l and b^O, \\Bu\\ 
£a\\Au\\+b\\u\\ for all **G£>G4) (see [l]) . 

THEOREM 4. If {Aa\aE:l} is a net of generators of CH(<f>) semi­
groups Ta with a limit D satisfying Theorem 3 {or (DA)) then 7) gen­
erates a CH(<t>) semigroup T which is the uniform strong limit on com­
pacta in S4 of the Ta. 

PROOF. We already know that T exists and that C^^A^Cp(S). 
The usual argument for the Trotter-Kato theorem (see [10, p. 270-
271 ]) can then be shortened considerably because the limit semigroup 
T and limit resolvents (z — D)"1 are already known to exist, but es­
sentially the same reasoning is used to prove uniform convergence on 
compacta. (The novelty lies in the treatment of the cases <£T^0 and 
the avoidance of ergodic theorems for pseudoresol vents. For another 
proof, see [7].) 

4. Generalizations. If a family T of seminorms p calibrates (gives a 
locally convex topology to) a complex vector space 36, there is a 
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Lumer structure À = { [ , ]p\ pET} for X consisting of indefinite semi-
inner products with [u, u]P

/2=p(u). A is (^-sectorial for A if it is <f>-
sectorial for every [ , ]p, and T(z) is a contraction iff for all w £ ï 
and p£:Tf p(T(z)u)^p(u). If "holomorphic" is taken to mean 
az—>(u*, T(z)u) is holomorphic for all u * £ ï * / ' the entire theory 
presented above can be generalized. Furthermore, every equicon-
tinuous semigroup creates a Y for which it is a contraction semigroup 
(see [6]), and it turns out that the results given in Chapter IX of 
[lO], along with several new theorems, can be obtained in this way. 
Details will appear in [7]. 
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