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1. Introduction. In [5], the author announced several theorems
applying the semi-inner product methods of Lumer and Phillips [4]
to the perturbation theory of one-parameter holomorphic contraction
semigroups on Banach spaces. This note extends the methods to a
perturbation theorem of Trotter [9], with proofs, and announces
generalizations to locally convex spaces. (See also Kato [3].)

2. Generation theorem, ¢-sectorial operators. Let X be a complex
Banach space, and let [ , ]: ¥X¥—C be a semi-inner product for ¥%,
in the sense of [4]: (i) for all v&€ ¥, u—[u, v] is a linear functional on
%, (i) [«#, #]=0 for all u€ %, with [lu|| =[x, #]'/2, and (i) | [«, v]|
<[[l oIl

DEeFINITION 1. A linear operator A with domain D(4)C ¥ is ¢-
sectorial for 0=<¢ <m/2 iff for every uED(4),

¢)) tan ¢ | Im[Au, u]| £ —Re[Adu, u] = 0.

Every ¢i-sectorial operator is ¢e-sectorial for all ¢ =¢,, and every
O-sectorial operator is dissipative (Re [Au, #]<0 as in [4]). If
¢=m/2, replace the first inequality by Im [Au, u]=0. If Ay= {z|n
= larg z[ gw/2+¢>}, and W(4) = { [Au, u]luE.‘D(A), Hu| =1} is the
numerical range of 4 then 4 is ¢-sectorial iff A,D { W(4) }~ (obvious
when sketched).

DEFINITION 2. A one-parameter semigroup I is in the family
CH(¢) of holomorphic contraction semigroups on the sector Sy
={z| |arg 2| <o} iff

(a) T is a homomorphism of the additive semigroup of Sy into the
multiplicative semigroup C(¥%) of all contraction operators on %
(IT@| =D,

(b) 2—T(2) is a holomorphic function from int(S;) to@(¥) C£( %),
the Banach algebra of bounded operators on ¥ (see [2, Chapter 5]),
and

(c) (slightly redundant) for all #& ¥%, the map z— 7 (2)x is continu-
ous from S, into ¥%.
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(d) Then the (infinitesimal) generator A of T is defined, for all
u & X where the limit through real & exists, by

) Au = lim i={ T(h)u — u}.
AN}
THEOREM 1. An operator A is the infinitesimal generator of a CH(¢)
semigroup T iff

(@) A is closed, densely defined, and ¢-sectorial, and
(b) p(AYN(C~A,) = &, where p(A) is the resolvent set.

LeMMA A. 4 is ¢-sectorial iff e*®A is dissipative for all 0= IGI <¢
<w/2.

Proor.

Rele? Au, u)

Re(e?[ Au, u])

3
®) cos § Re[Au, u] — sin 6 Tm[Au, u].

It

Since all such cos 6 are positive, ¢4 is dissipative and (3) is negative
for all uED(4) iff, dividing by —cos 6,

4) 0 < —Re[Adu, u] = Im[Au, u] tan 6.

Since tan 6 is monotone increasing, this holds for all 8 in the specified
range iff it holds for 6 = 4 ¢, depending upon the sign of Im[A4u, u].
This last is equivalent to (1).

LemMA B. Suppose A is ¢-sectorial, ucD(A), and zFA;. Then
) |z — )| = dz, Ag)u,
where d(z, Ay) s the distance from z to A,.
Proo¥. Clearly if |arg z| ¢, d(z, Ag) =]|2|. Then
e — 4)u|| = |lexp(i arg 2)(| 2| — exp(—i arg 2) 4)a]
=||(] 2] — exp(—i arg z) 4)4|.

But here exp(—1 arg 2)4 is dissipative by Lemma 2, and a calculation
from [4] yields for any dissipative B and 2,&C:

Re(z0)||||2 = Re[zom, u] < Re([z0u, #] — [Bu, u])
(1) = | [@ = Byw, ul| = |20 — Byad] |-
Cancelling ”u” and applying this with g,= lzl, B=exp(—1 arg 3)A4,
® Iz = a)adl 2 ReGa)llll = 3] [|ufl = dtz, aq)llu]
by (6).

(6)



550 R. T. MOORE [July

Butif ¢ = [arg zl =w—¢, trigonometry shows that
) d(z, Ag) = cos(arg z — ¢) ] z|.
Then e~*#4 is dissipative by Lemma 2 and by the same procedure
with zo=exp(i(arg 2—¢))| 2|, B = ¢4,

I — Dul| = ||e{expli(arg z — ¢)) | 2] — e~ a}u|

[|(exp(i(arg 5 — #) | 2| — e~ 4)u]|
= Re(exp(i(arg z — ¢)) | z| )Hu“
= cos(arg s — ¢) | 2| [[ul| = s A9)]4].

LemMA C. If (5) holds and A is closed p(A) either is disjoint from
C~A, or contains C~Ay (the complement of Ay in C).

ProoF. If 20Ep(4)MN(C~A,) then (5) yields

(11) [l Gzo — )| < dlz0, Ag)~.

Then the argument of [10, Theorem VIII.2.1], with this estimate,
shows that for z in the open disc about 2z, tangent to Ay (Izo—zl
<d(z0,Ay)), 2Ep(A4), with the Neumann expansion

It

(10)

(12) (= A = 3 (50— (a0 — A)~G+.

k=0
Any nonempty subset of C~Ay containing a Ag-tangent disc about
each of its members exhausts C~A, (induction).

LemMA D (HiLLE). Let T be any strongly continuous semigroup on
Sy whose restriction to int(S,) is in H(p, ¢) ([2, Definition 10.6.1,
p. 325]), and whose generator is A. Then for |8] <¢, t—Te(t) = T(et)
is a semigroup of class Co with generator Ag=e®A. If T CH(¢), then
ToyECH(0) and €A 1is dissipative for [0[ =o.

ProoF. The argument of Lemma 10.6.2 and the first part of the
proof of Theorem 12.8.1 in [2] yields finite constants M4 and wg with
(13) 72| < Myeet.

Then the deformation-of-contours argument on page 384 of [2] leads
to the following rewording of 12.8.4:

(18) (\— A)u=e” f G_M"tT(ewt)udt = e®(eP\ — Ag)"'u = v.

0

For such a v (these exhaust D(4) = D(4))
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e 4y = —e?(\ — A)v + e®\v = —ePu + Py
= —ePy 4 (e®\ — Ap)v + A

= —ePy 4 ePu + Aoy = A,

(15)

substituting twice and cancelling.

If T consists entirely of contractions, so does T, hence Theorem 3.2
of [4] applies to prove that ei?4 = 4, is dissipative.

Proor or THEOREM 1. If TE&CH(p), every €4 is dissipative by
Lemma D, for I0] <o, so 4 is ¢-sectorial by Lemma A. By Theorem
3.2 of [4] again, since T\ is a contraction semigroup, 4o=A4 is closed,
densely defined, and has 1Ep(4)MNC~A,. Hence (a) and (b) hold.

Suppose (a) (especially 4 ¢-sectorial) and (b), so that by Lemmas
B and C and equation (5),

(16) e — )Y = d(z )™

Then Hille’s Theorem 12.8.1 of [2] shows that 4 generates a H(—¢, ¢)
semigroup T™* on int(Ss). Applying Lemma D to closed subsectors,
and Lemma 1 to see that e?®4 is dissipative, it follows that all
T*(ef) are contractions by Theorem 3.2 of [4]. It remains to show
that the contraction semigroups generated by eti*4 extend T to all
of S, forming a CH(¢) semigroup 7. All Ty generated by ¢4 for
[0[ <¢ leave the common D(4)=D(e®4) invariant, are differenti-
able on it and commute with 4 (Theorem 10.3.3 of [2]). If uED(4),

td
Tio()u — To()u = f d_s (T14(s) To(t — s)u)ds
7 = ft T14(s)(et* A — e®A)To(t — s)uds

= {e:!:iqb — eio} fﬁ T+4(s) To(t — s) Auds.
0

Since the T’s are contractions, the last integral is smaller than #|| 44|
and, as 0— +¢, To(t)u—T+4(f)u uniformly on ¢{-compacta, allowing a
continuous extension of z—T*(z)u to Ss. By 3—¢, this extends to
all #E€X, and the semigroup property extends by limits as well, to
create a T&CH(¢).

3. The perturbation theorems.

THEOREM 2. (a) If A and B are ¢-sectorial, and o and B nonnegative,
then D=aA+BB is ¢-sectorial (see [8]).



552 R. T. MOORE {July

) If {Aa, a €I} is a net of ¢-sectorial operators, and D is defined,
for all u where the limit exists in { D(4s)|aEI}, by Du=lim A.u,
then D is ¢-sectorial.

Proor. (a) If uEDUANDB), [(@d+BB)u, ul=aldu, u]
+B[Bu, u]. Then W(ad +BB) CaW(A4)+BW(B) CAy4 since A, is a
cone; the same applies for closures since Ay is closed (Def. 1 et seq.).

(b) [Du, u]=[(D—Adu, u]+[Awu, u] and |[(D—A4.)u, ]|
<|[(D—A4)4| ||ul|—0; so [Du, u]=1im[4.u, u], and the same ap-
plies to real and imaginary parts, so (1) for D follows from (1) for
the 4.,.

THEOREM 3. Suppose D in Theorem 2 (a) or (b) is densely defined,
and for some zoEAy, range (z— D) is dense. Then D exists and generates
a CH(¢p) semigroup.

ProoF. All e¥D for |0] <¢ are dissipative by Lemma A. Theorem
3.3 of [4] insures that D exists, and an easy modification of the proof
of their Lemma 3.4 shows that a new semi-inner product can be
chosen making all e?D dissipative at once, so D becomes ¢-sectorial.
Then as in Theorem VIII.1.1 of [10, p. 209], 20Ep(D) and Theorem 1
applies.

The following can supply the range condition:

(DA) D has a densely defined dissipative adjoint D*; e.g. ‘n (b)
the net {A4% IaEI } consists of dissipative operators converging on a
dense subset of %* (see Corollary 3.2 in [4]).

(G) In (a), D(4)CD(B) and for some a<1 and 520, || By
<a||Au||+b||u|| for all uED(A) (see [1]).

THEOREM 4. If {A.|aE€I} is a net of gemerators of CH(gp) semi-
groups T, with a limit D satisfying Theorem 3 (or (DA)) then D gen-
erates a CH(¢p) semigroup T which is the uniform strong limit on com-
pacta in Sy of the T..

Proor. We already know that T exists and that C~A,Cp(D).
The usual argument for the Trotter-Kato theorem (see [10, p. 270-
271]) can then be shortened considerably because the limit semigroup
T and limit resolvents (z— D)~! are already known to exist, but es-
sentially the same reasoning is used to prove uniform convergence on
compacta. (The novelty lies in the treatment of the cases ¢ 0 and
the avoidance of ergodic theorems for pseudoresolvents. For another
proof, see [7].)

4. Generalizations. If a family I of seminorms p calibrates (gives a
locally convex topology to) a complex vector space ¥, there is a
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Lumer structure A= {[ , ],| pET'} for ¥ consisting of indefinite semi-
inner products with [«, #]Y?=p(u). A is ¢-sectorial for A if it is ¢-
sectorial for every [, ], and T'(z) is a contraction iff for all uE€ %
and pETL, p(T(2)u)=p(u). If “holomorphic” is taken to mean
“2—(u*, T'(2)u) is holomorphic for all #*& X*,” the entire theory
presented above can be generalized. Furthermore, every equicon-
tinuous semigroup creates a I' for which it is a contraction semigroup
(see [6]), and it turns out that the results given in Chapter IX of
[10], along with several new theorems, can be obtained in this way.
Details will appear in [7].
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