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Let X be a measure space, and X a finite measure (countably addi
tive) with values in Rn. The range of X is the set of all vectors X(E) 
where E ranges over the measurable subsets of X. In a previous paper 
[2] we introduced a certain positive measure z>, determined by the 
measure X, on the projective space Pn"1. We then showed that a 
necessary and sufficient condition that the range of X be a ball is that 
v be an orthogonally invariant measure on Pn~l. Our purpose in this 
paper is to show that that result was but a special case of a more gen
eral theorem: If X' is another measure space, with X' a finite measure 
on X' with values in Rn

r and if v' is the corresponding positive mea
sure on P^-1 , then a necessary and sufficient condition that the range 
of X and the range of X' have the same convex hull is that (a) X(X) 
=X'(X') and (b) v — v'. If only condition (b) is satisfied, the range of 
X is a translate of the range of X'. 

The appearance of the convex hull of the range of the measure is 
not surprising, because, as shown by Liapunoff, if the measure is 
atom free its range is a convex set (see [2]). The theorem is false if 
we refer only to the range of the measures, and not to the convex 
hull of the range, as can easily be shown by example. 

For x a point in 5W~1, we denote by Hx the hemisphere {yGS*""1; 
<y,*>èO} . 

LEMMA 1. Let n be a real Borel measure on Sn~~l. Let a be the natural 
map of S71"1 onto P n ~ \ and let v be the Borel measure on Pn~l defined by 
v(E) —ii(orl{E)). Then a necessary and sufficient condition that for 
each x in Sn~l 

/ (x, y)ti(dy) = 0 

is that (a) fsn-i yn(dy) = 0 and (b) v is the zero measure on Pn~l. 

PROOF. First assume that (a) and (b) are satisfied. Condition (a) 
implies that 

J {x, y)n(dy) + I (x, y)p(dy) = 0 
Hx J H-x 

1 Supported by National Science Foundation grant GP-5803. 
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(note that the integral of (x, y) over Hxr\H„x is obviously zero), 
while condition (b) implies that 

I (xf y)n(dy) - I (x, y)n(dy) = 0. 

The desired conclusion follows immediately. For the converse assume 
that for each x, JHX (X, y)fx(dy)=0. I t follows immediately that for 
each x 

(x, I y»(dy))= I {x,y)/i(dy)- I {-x,y)n(dy) = 0 

whence (a) is satisfied. The proof of (b) is similar to the argument 
used in Lemmas 2 and 3 of [2] so we shall content ourselves with out
lining the proof here and leaving the details to the reader. For a 
fixed Xo in Sn"1

9 we introduce the function 0 defined on 5 n _ 1 by 
<£(;y)=max{0, (xo, y)}. Assuming first that fx is invariant under the 
special orthogonal transformations that leave xo fixed it can be read
ily shown that the hypotheses imply that the convolution of the 
measure ju with the function <f> is zero (the convolution being is the 
sense of convolutions on symmetric spaces). By taking Fourier 
Stieltjes transforms this implies that the product of the Fourier co
efficients of <j> with those of fx yields zero. But for the spherical func
tions on Sn~x which correspond to spherical functions on Pn~l, the 
Fourier coefficients of <j> are not zero, so those of JX must be zero. This 
implies (b) for ju of the special type we are considering. For general fx 
we can average its rotations via the orthogonal transformations which 
fix Xo, and applying the special case we can conclude that Jfdv == 0 for 
ƒ a spherical function on Pn"1. But the hypotheses on JX are invariant 
under orthogonal transformations; so it follows that Jfdv = 0 whenever 
ƒ is an orthogonal transform of a spherical function. But the linear 
space of continuous functions generated by functions of this type is 
dense. I t follows immediately that ^ = 0 a s required. 

LEMMA 2. Let X be a finite Revalued measure on the measure space X. 
Then the convex hull of the range of X is determined once we know, for 
each x in Sn~1

f sups {xt X(E)), where E varies over the measurable sub
sets of X. 

PROOF. The assertion that r^supE{xt X(£)) is equivalent to 
the assertion that the range of X is contained in the half space 
{ î̂ (#» y)=*r}* But the convex hull of the range of X is exactly the 
intersection of such half spaces, and the result follows. 
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Denoting by | \ | the total variation measure of X, we define 
f = dh/d\\\. Observe that | / | = 1 almost everywhere, so ƒ defines a 
map of X into Sn~~l. There are thus induced on Sn~1 measures ƒ (X) and 
/ ( | X | ) , defined by ƒ (X)(E) =X (ƒ-*(£)), and / ( |X | )(E) = |X| (ƒ-*(£)) 
for E a Borel set in S»-1. Note that |/(X)| = / ( |X | ), and that/(X)(dx) 
= xf(\\\)(dx). 

THEOREM 1. The ranges of the measures X andf(\) have the same con
vex hull. 

PROOF. Since for E a measurable subset of Xf and x in Sn~~l
t 

(x, X(E) )^ (x, X^-^iJ*))) , the result follows easily from Lemma 2. 

LEMMA 3. Let JJL and /x' be finite positive measures on Sn~l, and let v and 
v' be the corresponding measures induced on Pn~l via the natural map a. 
Let X and X' be the vector measures on Sn~l defined by \(dx) = Xfx(dx) 
and X' (dx) = XJJL' (dx). Then a necessary and sufficient condition that the 
ranges of \ and X' have the same convex hull is that (a) \(Sn~l) =\'(Sn~1) 
and (b) v — v\ 

PROOF. From Lemma 2 we conclude that the ranges of X and X' 
have the same convex hull if and only if for each x in 5W_1 

sup (x, X(E)) = sup (x, X'(£)). 
E E 

That is, if and only if for each x, (x, \(Hx)) = (x, \'(HX)) or, equiva
len t^ , 

J (x,y)fx(dy) = I (x,yW(dy). 
Hx J II x 

Thus, applying Lemma 1 to the measure M~~M'> the result easily fol
lows. 

LEMMA 4. Let y be a finite positive measure on Sn~~l, and let v be the 
induced measure on Pn~~l, Define the measure X by \(dx) = xii(dx). Then 
there is a finite positive measure \i' on Sn~~l such that (i) /i' induces the 
same measure v on Pn~l. (ii) If X' is defined by \'(dx) = Xfi'(dx), then 
\/(Sn~-1)=0. (iii) The convex hull of the range of X' is a translate of the 
convex hull of the range of X. 

PROOF. First consider the case where JJL (and hence X) is atom free. 
In this case there is a Borel set F such that \(F) = %\(Sn~1). We de
fine ix' by !x'(E)=»(E)-ij,(Er\F)+!JL(Er\(-F)) (where here - F 
means the set of points {•— y; yE:F}). I t is easily seen that X'(E) 
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=\(E)—2\(Er\F). Thus (ii) is true. From the definition of / / , (i) is 
evidently true. For E a Borel set, denote by E' the symmetric differ
ence of E with F. I t is easy to calculate that \'(E') = X(E) ~-\(F) and 
\'(E)=\(E')-\(F). Thus (iii) is satisfied. 

Next we consider the case where JJL is completely atomic. In this case 
we can find a sequence of points x» ( i = l , 2, • • • ) in S""1 such that 
x2i= —X2i-i and such that JJL has mass m,- at xif where Ogm», £ w , -
< 00, and m2*-i and m2t- are not both zero. We define the measure /*' 
to have mass mi at Xi, where m^x — m^ — è(w2»-i+^2*)• Then (i) 
and (ii) are evidently satisfied. If {r t} is a sequence of real numbers 
with O^fi^l (i=l, 2, • • • ) we define a sequence {r/ } so that 
O ^ r / g l (*=1, 2, — - ) and rj,-!—r«=(w2<-i+W2*)"1(2w2*-i^2i-4 
— 2m2t̂ 2*+W2» —W2*-i). I t is not difficult to show that such a choice is 
possible, and that every sequence 
can be obtained in this way from a suitable sequence {*%•}. Now for 
every point X)r^iW»- in the convex hull of the range of X, the point 
^jT-Xiini = XJrifld-m»- —JX(5n~1) is in the convex hull of the range of 
X'. Thus (iii) is satisfied. 

In the case of a general finite positive measure ju we proceed simply 
by writing it as a sum of an atom free measure and a completely 
atomic measure, and applying the result to each part separately. 
Evidently (i) and (ii) will be satisfied, and since the range of a mea
sure is the algebraic sum of the range of its nonatomic and completely 
atomic parts, (iii) will also be satisfied. 

THEOREM 2. Let X be a measure space, and X a finite countably addi
tive measure on X. Set f=drK/d\\\, and let v be the measure on Pn~~l 

defined by v(E) = \\\ (f^or^E)) for E a Borel subset of Pn~\ Let X' 
be another measure space, X' a finite countably additive measure on Xr 

with values in Rn, and let the measure v' on Pn~x be analogously defined. 
Then in order that the convex hull of the range of X and the convex hull of 
the range of X' be identical, it is necessary and sufficient that (a) \(X) 
= W(X') and (b) v = v'. Condition (b) is satisfied if and only if the con
vex hull of the range of X' is a translate of the convex hull of the range of X. 

PROOF. This now follows easily from Theorem 1 and Lemmas 3 
and 4. 
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