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Gelfand's 1941 proof of the existence of multiplicative functionals 
in commutative Banach algebras is essentially based on Zorn's axiom. 

In 1961, P. J. Cohen [3] gave a constructive (i.e. free from Zorn's 
axiom) way to get rid of Banach algebras in some of their applica
tions. 

This year, E. Bishop [ l ] , [2] has presented a theory of Banach 
algebras in the frame of L. E. J. Brouwer's constructivist ideas. There
from it is easy to deduce a constructive proof of the existence of 
multiplicative functionals. However this proof would be needlessly 
intricate when just interested in constructive methods. 

Here is a simple constructive proof of Gelfand's theorem. 

1. Let A be a commutative separable Banach algebra with unit 1 
throughout the paper. 

Let us recall some properties of ideals of A. 
(a) 0, Ay ]CïLi#»v4 an^ S + Z ^ i i a ^ are ideals of A whenever 

xi, • • • , xmÇzA and 3 is an ideal of A. 
(b) If an ideal 3 contains an invertible element, then 3 = ^4. 
(c) Let 3?£A be an ideal, then d[l, 3] = 1. 
Since 0 £ 3 , d[l, 3 ] ^ 1 . Moreover if d [ l , 3 ] < 1 , there exists tf0£3 

such that d[l9 XQ]<1, Then XQ1 exists and consequently l=XoX^"1 

belongs to 3. 
(d) Let ST^A be an ideal. If 1—x;y£3, then d[x, Q]*zl/\\y\\. 
In fact, 3?^A implies d [ l , 3] = 1 and since 1— #;y£3, we have 

d[xy, 3] = 1 and d[xyt ü]£d[xy, yü]£*\\y\\d[x, 3]. 

2. We need a lemma, which is a direct version of the classical fact 
that the spectrum of the Banach algebra E/A is not void. 

Let 3?£A be an ideal. Then f or all xÇzA, there exists 2GC such that 
3 + (x-z)A?£A. 

Suppose there exists an ideal 3?^ A and xÇzA such that 3 + (# — z)A 
= A for all zGC. 

Then for all 2 6 C , there is at least one element a(z)£zA with 
1 — (x—s)a(s)G3. 

Let £ be any continuous linear functional in A vanishing on 3. 
(a) £[&(s)] depends only on z(EC and not on the choice of a(z)> 
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In fact if l — (* —js)atG3, (i = l, 2), then 

%[ai — a2] = ï[( l — (x — z)a2)ai — (1 — (x — z)ai)a2] = 0. 

So ï[a(s)] is defined without using the axiom of choice. 
(b) £[#(2:)] is holomorphic on C. 
In the neighborhood V(z0) = {z: |s—20 | <l/ | |a(so) | |} of ZoGC, 

1 — (z—Zo)a(z0) is invertible and ï[a(^)] == 3:[a(zQ)/(l — (z — z0)a(z0))] 
since 

a(^) 
1 — (3 — Zo)a(zo) 

[l — (3 — 2o)a(£o)]a(£) — [l — (x — z)a(z)]a(zo) 
— £ 3. 

1 — (z — £o)a(2o) 
(c) /w fact, % [a (z) ] s 0. 
For I s I >| |* | | , x—z is invertible and y[a(s)] = ï [ (* — ̂ ) - 1] because 

(x - z)~l - a(z) = (x - s T ^ l - (* - z)a(z)] G 3. 

Hence the conclusion by Liouville's theorem, since ï [ (* — 2)""1]—>0 
when £—> 00, from the inequalities 

I Ï [ (* - «)-!] I ^ C\\(x - «)-»|| g C(| »| - ||*||)-i. 

(d) rfere tó ï vanishing on 3 aw J SWCÂ /Aa/ £ [a (2) ] ^ 0 . 
Let us fix SoGC. Since d [ l , 3] = 1 and 1 — (* — 2o)#(*o)G3, we have 

d[a(z0), 3 ] è 1/(||*|| +12o|). As 4̂ is separable, by Hahn-Banach's 
theorem (see [4], for instance), there is a continuous linear functional 
£ such that 

f[a(so)] = 1/(| |*| |+ l*o |) , ?[3] = 0. 

So (c) and (d) are contradictory, hence the lemma. 

3. Let us prove Gelfand's theorem. 
Let A be a commutative separable Banach algebra with unit 1. 
If 3y*A is an ideal, then there exists a continuous nonzero multiplica

tive functional vanishing on 3. 
Let xm be a dense sequence in A. 
Since ST^A, by successive applications of the lemma we get a 

sequence zmÇzC such that 3 + ^T%Lt (xi — z^A 9^A, hence 

d 1, 3 + J£ (#< - *.-M = 1, Vw. 
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Therefore there exists a sequence %m of continuous linear functionals 
such that 

HtJI - 1, 6»(1) = 1, &.U+ £ ( * < - *<M] = 0. 

Hence we get 

ï»(3) = 0, &„(*<) = Si, 

for 
TO 

o , #» 2»fj X^Xy £{#ƒ t i l «3 "T" x ,< \%i Z%) A. 

As \\$m\\ = 1 for all m, there is a weak convergent subsequence of £w 

for A is separable (see [4], for instance). Let £ be its limit. 
Of course £ is a continuous linear functional and 

Hïll = 1, f(l) = 1, ï(3) = 0. 

Moreover y is a multiplicative functional. In fact, we have 

ïfaay) = ï(*<)ï(*y), Vi,y 

and the sequence xm is dense in A. 
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