D. E. De Giorgi, Frontiere orientate di misura minima, Sem. di Mat. de Scuola Norm. Sup. Pisa, 1960-1961, 1-56.

FF. H. Federer, and W. H. Fleming, Normal and integral currents, Ann. of Math. 72 (1960), 458-520.

F. W. H. Fleming, Flat chains over a finite coefficient group, Trans. Amer. Math. Soc. 121 (1966), 160-186.

M. M. Miranda, Sul minimo dell'integrale del gradiente di una funzione, Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 626-665.

MO. C. B. Morrey, Multiple integrals in the calculus of variations, Springer-Verlag, New York, 1966.

R1. E. R. Reifenberg, Solution of the Plateau problem for m-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1–92.

R2. ———, An epiperimetric inequality related to the analyticity of minimal surfaces, Ann. of Math. 80 (1964), 1-14.

R3. ———, On the analyticity of minimal surfaces, Ann. of Math. 80 (1964), 15–21.

PRINCETON UNIVERSITY

ZERO-SETS IN POLYDISCS¹

BY WALTER RUDIN

Communicated by Maurice Heins, Feb. 10, 1967

For $N = 1, 2, 3, \cdots$ the polydisc U^N consists of all $z = (z_1, \cdots, z_N)$ in the space C^N of N complex variables whose coordinates satisfy $|z_j| < 1$ for $j = 1, \cdots, N$. We write U for U^1 . The distinguished boundary of U^N is the torus T^N defined by $|z_j| = 1$ $(1 \le j \le N)$. The zero-set of a complex function f defined in U^N is the set Z(f) of all $z \in U^N$ at which f(z) = 0. We call a set $E \subset U^N$ a zero-set in U^N if E = Z(f) for some f which is holomorphic in U^N . The main result of this note gives a sufficient condition for zero-sets of bounded functions.

THEOREM 1. If E is a zero-set in U^N and if no point of T^N is a limit point of E, then there is a bounded holomorphic function F in U^N such that Z(F) = E.

[The term "limit point" refers of course to the topology induced on C^{N} by the euclidean metric.]

For N=1 this is utterly trivial since the hypothesis then forces

¹ Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant No. 1160-66, and by the Wisconsin Alumni Research Foundation.

E to be a finite set. For N > 1, however, the theorem does have content: a qualitative corollary is that zero-sets in U^N which have positive distance from T^N must be rather nice near the rest of the boundary of U^N . More precisely, such sets E must satisfy the following generalized Blaschke condition:

If $\Phi(\lambda) = (\phi_1(\lambda), \dots, \phi_N(\lambda))$ for $\lambda \in U$, where each ϕ_j is a holomorphic map of U into U, and if

(1)
$$Y = \Phi^{-1}(E \cap \Phi(U))$$

then either Y = U or Y is an at most countable set $\{\lambda_i\}$ such that $\sum (1 - |\lambda_i|) < \infty$.

This is a consequence of Blaschke's theorem, applied to the zeros of the bounded function $F \circ \Phi$.

It is also worth noting that the hypothesis of Theorem 1 does not imply the stronger conclusion that F can be chosen so as to be continuous on $U^N \cup T^N$:

THEOREM 2. There exists a zero-set E in U^2 which has no point of T^2 as a limit point but which has the following property: If F is holomorphic in U^2 and continuous on $U^2 \cup T^2$ and if Z(F) contains E, then F=0.

We first sketch the proof of Theorem 2. Let *B* be a Blaschke product such that every point of the unit circle is a limit point of zeros of *B*, define f(z, w) = 2w - B(z) for $(z, w) \in U^2$, and put E = Z(f). If *F* is holomorphic in U^2 and continuous on $U^2 \cup T^2$ then *F* has a continuous extension to the closure of U^2 , and if |z| = 1, $F(z, \cdot)$ is holomorphic in *U* and continuous on \overline{U} . Known properties of Blaschke products imply that the closure of *E* contains all points (z, w) with |z| = 1, $|w| \leq \frac{1}{2}$. Hence F(z, w) = 0 for |z| = 1, $|w| \leq 1$ if $E \subset Z(F)$. In particular, F(z, w) = 0 at every point of T^2 , hence F = 0.

The proof of Theorem 1 starts with a one-variable lemma.

LEMMA 1. If 0 < r < 1, $Q = \{\lambda : r < |\lambda| < 1\}$, and

(2)
$$h(\lambda) = \sum_{n=-\infty}^{\infty} a_n \lambda^n, \qquad h_1(\lambda) = \sum_{n=-\infty}^{-1} a_n \lambda^n$$

for $\lambda \in Q$, then

(3)
$$\|\operatorname{Re} h_{I}\|_{Q} \leq (8/(1-r))\|\operatorname{Re} h\|_{Q}$$

The norm used in (3) is the supremum over Q.

Suppose h=u+iv in Q and $|u| \leq 1$. Put $t=\frac{1}{2}(1+r)$. It is easy to see that $|h'(\lambda)| \leq 4/(1-r)$ if $|\lambda|=t$, so that

$$\left\{\sum_{n=1}^{\infty} |a_n| r^n\right\}^2 \leq \frac{\pi^2}{6} \cdot \sum_{n=1}^{\infty} n^2 |a_n|^2 r^{2n}$$
$$\leq \frac{\pi^2}{6} \cdot \sum_{n=-\infty}^{\infty} n^2 |a_n|^2 t^{2n-2}$$
$$= \frac{\pi}{12} \cdot \int_{-\pi}^{\pi} |h'(te^{i\theta})|^2 d\theta < \frac{36}{(1-r)^2}$$

Hence if $\lambda \in Q$ and $|\lambda|$ is close to r, we have

$$|\operatorname{Re} h_1(\lambda)| = \left| u(\lambda) - \operatorname{Re} a_0 - \operatorname{Re} \sum_{n=1}^{\infty} a_n \lambda^n \right| < 2 + \frac{6}{1-r} < \frac{8}{1-r}$$

Since $h_1(\lambda) \rightarrow 0$ as $\lambda \rightarrow \infty$ the lemma now follows from the maximum modulus theorem.

Lemma 1 can be extended to several variables. Let Q^N be the cartesian product of N copies of the annulus Q. Every h holomorphic in Q^N has an absolutely convergent Laurent expansion

(4)
$$h(z_1, \cdots, z_N) = \sum a(n_1, \cdots, n_N) z_1^{n_1} \cdots z_N^{n_N}$$

in which the exponents n_i range independently over the set of all integers. For $j=1, \dots, N$ let $\pi_j h$ be the series obtained from (4) by replacing $a(n_1, \dots, n_N)$ by 0 whenever $n_j \ge 0$.

Lemma 2. $\|\operatorname{Re} \pi_j h\| q^N \leq (8/(1-r)) \|\operatorname{Re} h\| q^N$.

It suffices to prove this for j=1. Rewrite (4) in the form

(5)
$$h(z) = \sum_{n=-\infty}^{\infty} \phi_n(z_2, \cdots, z_N) z_1^n \quad (z \in Q^N)$$

and apply Lemma 1 (regarding z_2, \dots, z_N as fixed).

We now prove Theorem 1. Fix r < 1 so that the distance from E to Q^N is positive. Choose f holomorphic in U^N , so that Z(f) = E. Put $z' = (z_2, \dots, z_N)$. For $k = 0, 1, 2, \dots$ and $z' \in Q^{N-1}$ put

(6)
$$\psi_k(z') = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{(D_{\mathbf{i}}f)(\zeta, z')}{f(\zeta, z')} \zeta^k d\zeta$$

where D_1 denotes differentiation with respect to the first variable. Each ψ_k is holomorphic in Q^{N-1} . The number of zeros of $f(\cdot, z')$ in U (counted according to multiplicities) is $\psi_0(z')$. So ψ_0 is integer-valued,

July

hence constant, in Q^{N-1} . Call this constant *m*, let $\alpha_1(z'), \dots, \alpha_m(z')$ be the zeros of $f(\cdot, z')$, and define

(7)
$$\phi(z) = \prod_{j=1}^{m} (z_1 - \alpha_j(z')) \quad (z \in U \times Q^{N-1}).$$

If $k \ge 1$, $\psi_k(z') = \sum \alpha_j^k(z')$. The elementary symmetric functions are polynomials in these power sums. It follows that ϕ , f/ϕ and ϕ/f are holomorphic in $U \times Q^{N-1}$. The topological structure of Q^{N-1} therefore shows that there are integers k_2, \dots, k_N such that $z_2^{k_2} \dots z_N^{k_N} \phi/f$ has a single-valued continuous logarithm in $U \times Q^{N-1}$. Put $f_1 = z_2^{k_2}$ $\dots z_N^{k_N} \phi$. Then $f_1 = f \cdot \exp(g_1)$ in $U \times Q^{N-1}$, with g_1 holomorphic, and (7) implies that f_1 and $1/f_1$ are bounded in Q^N .

Similarly, there are holomorphic functions g_j in $Q^{j-1} \times U \times Q^{N-j}$ $(1 \le j \le N)$ such that, setting

(8)
$$f_j(z) = f(z) \cdot \exp(g_j(z)) \quad (z \in Q^{j-1} \times U \times Q^{N-j}),$$

both f_j and $1/f_j$ are bounded in Q^N .

It follows that f_i/f_j is bounded in Q^N . Hence $\operatorname{Re}(g_i - g_j)$ is bounded in Q^N , for every pair *i*, *j*. Also, $\pi_j g_j = 0$, so that

(9)
$$\operatorname{Re} \pi_j g_1 = \operatorname{Re} \pi_j (g_1 - g_j).$$

Lemma 2 (with $h=g_1-g_j$) now implies that Re π_jg_1 is bounded in Q^N , for $j=1, \dots, N$. Put

(10)
$$g = (1 - \pi_N) \cdot \cdot \cdot (1 - \pi_2)(1 - \pi_1)g_1.$$

Since

(11)
$$g_1 - g = \sum \pi_i g_1 - \sum \pi_i \pi_j g_1 + \sum \pi_i \pi_j \pi_k g_1 - \cdots,$$

repeated application of Lemma 2 shows that $\operatorname{Re}(g_1-g)$ is bounded in Q^N . Since the projections π_j commute with each other, (10) implies that $\pi_j g = 0$ for $1 \leq j \leq N$; this says that g extends to a function G holomorphic in U^N .

The function $F=f \cdot \exp(G)$ has the desired properties. For F clearly has the same zeros as f, and in Q^N we have $F=f_1 \cdot \exp(g-g_1)$. Since f_1 and $\operatorname{Re}(g-g_1)$ are bounded in Q^N , F is bounded in Q^N , hence in U^N .

University of Wisconsin and University of California, San Diego

1967]