D. E. De Giorgi, Frontiere orientate di misura minima, Sem. di Mat. de Scuola Norm. Sup. Pisa, 1960-1961, 1-56.

FF. H. Federer, and W. H. Fleming, Normal and integral currents, Ann. of Math. 72 (1960), 458-520.
F. W. H. Fleming, Flat chains over a finite coefficient group, Trans. Amer. Math. Soc. 121 (1966), 160-186.
M. M. Miranda, Sul minimo dell'integrale del gradiente di una funzione, Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 626-665.

MO. C. B. Morrey, Multiple integrals in the calculus of variations, Springer-Verlag, New York, 1966.

R1. E. R. Reifenberg, Solution of the Plateau problem for m-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1-92.

R2. \longrightarrow, An epiperimetric inequality related to the analyticity of minimal surfaces, Ann. of Math. 80 (1964), 1-14.

R3. - On the analyticity of minimal surfaces, Ann. of Math. 80 (1964), 1521.

Princeton University

ZERO-SETS IN POLYDISCS ${ }{ }^{1}$

BY WALTER RUDIN

Communicated by Maurice Heins, Feb. 10, 1967
For $N=1,2,3, \cdots$ the polydisc U^{N} consists of all $z=\left(z_{1}, \cdots, z_{N}\right)$ in the space C^{N} of N complex variables whose coordinates satisfy $\left|z_{j}\right|<1$ for $j=1, \cdots, N$. We write U for U^{1}. The distinguished boundary of U^{N} is the torus T^{N} defined by $\left|z_{j}\right|=1(1 \leqq j \leqq N)$. The zero-set of a complex function f defined in U^{N} is the set $Z(f)$ of all $z \in U^{N}$ at which $f(z)=0$. We call a set $E \subset U^{N}$ a zero-set in U^{N} if $E=Z(f)$ for some f which is holomorphic in U^{N}. The main result of this note gives a sufficient condition for zero-sets of bounded functions.

Theorem 1. If E is a zero-set in U^{N} and if no point of T^{N} is a limit point of E, then there is a bounded holomorphic function F in U^{N} such that $Z(F)=E$.
[The term "limit point" refers of course to the topology induced on C^{N} by the euclidean metric.]

For $N=1$ this is utterly trivial since the hypothesis then forces

[^0]E to be a finite set. For $N>1$, however, the theorem does have content: a qualitative corollary is that zero-sets in U^{N} which have positive distance from T^{N} must be rather nice near the rest of the boundary of U^{N}. More precisely, such sets E must satisfy the following generalized Blaschke condition:

If $\Phi(\lambda)=\left(\phi_{1}(\lambda), \cdots, \phi_{N}(\lambda)\right)$ for $\lambda \in U$, where each ϕ_{j} is a holomorphic map of U into U, and if

$$
\begin{equation*}
Y=\Phi^{-1}(E \cap \Phi(U)) \tag{1}
\end{equation*}
$$

then either $Y=U$ or Y is an at most countable set $\left\{\lambda_{i}\right\}$ such that $\sum\left(1-\left|\lambda_{i}\right|\right)<\infty$.

This is a consequence of Blaschke's theorem, applied to the zeros of the bounded function $F \circ \Phi$.

It is also worth noting that the hypothesis of Theorem 1 does not imply the stronger conclusion that F can be chosen so as to be continuous on $U^{N} \cup T^{N}$:

Theorem 2. There exists a zero-set E in U^{2} which has no point of T^{2} as a limit point but which has the following property: If F is holomorphic in U^{2} and continuous on $U^{2} \cup T^{2}$ and if $Z(F)$ contains E, then $F=0$.

We first sketch the proof of Theorem 2. Let B be a Blaschke product such that every point of the unit circle is a limit point of zeros of B, define $f(z, w)=2 w-B(z)$ for $(z, w) \in U^{2}$, and put $E=Z(f)$. If F is holomorphic in U^{2} and continuous on $U^{2} \cup T^{2}$ then F has a continuous extension to the closure of U^{2}, and if $|z|=1, F(z, \cdot)$ is holomorphic in U and continuous on \bar{U}. Known properties of Blaschke products imply that the closure of E contains all points (z, w) with $|z|=1$, $|w| \leqq \frac{1}{2}$. Hence $F(z, w)=0$ for $|z|=1,|w| \leqq 1$ if $E \subset Z(F)$. In particular, $F(z, w)=0$ at every point of T^{2}, hence $F=0$.

The proof of Theorem 1 starts with a one-variable lemma.
Lemma 1. If $0<r<1, Q=\{\lambda: r<|\lambda|<1\}$, and

$$
\begin{equation*}
h(\lambda)=\sum_{n=-\infty}^{\infty} a_{n} \lambda^{n}, \quad h_{1}(\lambda)=\sum_{n=-\infty}^{-1} a_{n} \lambda^{n} \tag{2}
\end{equation*}
$$

for $\lambda \in Q$, then

$$
\begin{equation*}
\left\|\operatorname{Re} h_{1}\right\|_{Q} \leqq(8 /(1-r))\|\operatorname{Re} h\|_{Q} . \tag{3}
\end{equation*}
$$

The norm used in (3) is the supremum over Q.
Suppose $h=u+i v$ in Q and $|u| \leqq 1$. Put $t=\frac{1}{2}(1+r)$. It is easy to see that $\left|h^{\prime}(\lambda)\right| \leqq 4 /(1-r)$ if $|\lambda|=t$, so that

$$
\begin{aligned}
\left\{\sum_{n=1}^{\infty}\left|a_{n}\right| r^{n}\right\}^{2} & \leqq \frac{\pi^{2}}{6} \cdot \sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} r^{2 n} \\
& \leqq \frac{\pi^{2}}{6} \cdot \sum_{n=-\infty}^{\infty} n^{2}\left|a_{n}\right|^{2} t^{2 n-2} \\
& =\frac{\pi}{12} \cdot \int_{-\pi}^{\pi}\left|h^{\prime}\left(t e^{i \theta}\right)\right|^{2} d \theta<\frac{36}{(1-r)^{2}}
\end{aligned}
$$

Hence if $\lambda \in Q$ and $|\lambda|$ is close to r, we have

$$
\left|\operatorname{Re} h_{1}(\lambda)\right|=\left|u(\lambda)-\operatorname{Re} a_{0}-\operatorname{Re} \sum_{n=1}^{\infty} a_{n} \lambda^{n}\right|<2+\frac{6}{1-r}<\frac{8}{1-r}
$$

Since $h_{1}(\lambda) \rightarrow 0$ as $\lambda \rightarrow \infty$ the lemma now follows from the maximum modulus theorem.

Lemma 1 can be extended to several variables. Let Q^{N} be the cartesian product of N copies of the annulus Q. Every h holomorphic in Q^{N} has an absolutely convergent Laurent expansion

$$
\begin{equation*}
h\left(z_{1}, \cdots, z_{N}\right)=\sum a\left(n_{1}, \cdots, n_{N}\right) z_{1}^{n_{1}} \cdots z_{N}^{n_{N}} \tag{4}
\end{equation*}
$$

in which the exponents n_{i} range independently over the set of all integers. For $j=1, \cdots, N$ let $\pi_{j} h$ be the series obtained from (4) by replacing $a\left(n_{1}, \cdots, n_{N}\right)$ by 0 whenever $n_{j} \geqq 0$.

Lemma 2. $\left\|\operatorname{Re} \pi_{j} h\right\| Q^{N} \leqq(8 /(1-r))\|\operatorname{Re} h\| Q^{N}$.
It suffices to prove this for $j=1$. Rewrite (4) in the form

$$
\begin{equation*}
h(z)=\sum_{n=-\infty}^{\infty} \phi_{n}\left(z_{2}, \cdots, z_{N}\right) z_{1}^{n} \quad\left(z \in Q^{N}\right) \tag{5}
\end{equation*}
$$

and apply Lemma 1 (regarding z_{2}, \cdots, z_{N} as fixed).
We now prove Theorem 1. Fix $r<1$ so that the distance from E to Q^{N} is positive. Choose f holomorphic in U^{N}, so that $Z(f)=E$. Put $z^{\prime}=\left(z_{2}, \cdots, z_{N}\right)$. For $k=0,1,2, \cdots$ and $z^{\prime} \in Q^{N-1}$ put

$$
\begin{equation*}
\psi_{k}\left(z^{\prime}\right)=\frac{1}{2 \pi i} \int_{|\zeta| \Rightarrow r} \frac{\left(D_{1} f\right)\left(\zeta, z^{\prime}\right)}{f\left(\zeta, z^{\prime}\right)} \zeta^{k} d \zeta \tag{6}
\end{equation*}
$$

where D_{1} denotes differentiation with respect to the first variable. Each ψ_{k} is holomorphic in Q^{N-1}. The number of zeros of $f\left(\cdot, z^{\prime}\right)$ in U (counted according to multiplicities) is $\psi_{0}\left(z^{\prime}\right)$. So ψ_{0} is integer-valued,
hence constant, in Q^{N-1}. Call this constant m, let $\alpha_{1}\left(z^{\prime}\right), \cdots, \alpha_{m}\left(z^{\prime}\right)$ be the zeros of $f\left(\cdot, z^{\prime}\right)$, and define

$$
\begin{equation*}
\phi(z)=\prod_{j=1}^{m}\left(z_{1}-\alpha_{j}\left(z^{\prime}\right)\right) \quad\left(z \in U \times Q^{N-1}\right) \tag{7}
\end{equation*}
$$

If $k \geqq 1, \psi_{k}\left(z^{\prime}\right)=\sum \alpha_{j}^{k}\left(z^{\prime}\right)$. The elementary symmetric functions are polynomials in these power sums. It follows that $\phi, f / \phi$ and ϕ / f are holomorphic in $U \times Q^{N-1}$. The topological structure of Q^{N-1} therefore shows that there are integers k_{2}, \cdots, k_{N} such that $z_{2}{ }^{k_{2}} \cdots z_{N}{ }^{k_{N} \phi / f}$ has a single-valued continuous logarithm in $U \times Q^{N-1}$. Put $f_{1}=z_{2} k_{2}$ $\cdots z_{N}{ }^{k_{N}} \phi$. Then $f_{1}=f \cdot \exp \left(g_{1}\right)$ in $U \times Q^{N-1}$, with g_{1} holomorphic, and (7) implies that f_{1} and $1 / f_{1}$ are bounded in Q^{N}.

Similarly, there are holomorphic functions g_{j} in $Q^{j-1} \times U \times Q^{N-j}$ $(1 \leqq j \leqq N)$ such that, setting

$$
\begin{equation*}
f_{j}(z)=f(z) \cdot \exp \left(g_{j}(z)\right) \quad\left(z \in Q^{j-1} \times U \times Q^{N-j}\right) \tag{8}
\end{equation*}
$$

both f_{j} and $1 / f_{j}$ are bounded in Q^{N}.
It follows that f_{i} / f_{j} is bounded in Q^{N}. Hence $\operatorname{Re}\left(g_{i}-g_{j}\right)$ is bounded in Q^{N}, for every pair i, j. Also, $\pi_{j} g_{j}=0$, so that

$$
\begin{equation*}
\operatorname{Re} \pi_{j} g_{1}=\operatorname{Re} \pi_{j}\left(g_{1}-g_{j}\right) \tag{9}
\end{equation*}
$$

Lemma 2 (with $h=g_{1}-g_{j}$) now implies that $\operatorname{Re} \pi_{j} g_{1}$ is bounded in Q^{N}, for $j=1, \cdots, N$. Put

$$
\begin{equation*}
g=\left(1-\pi_{N}\right) \cdots\left(1-\pi_{2}\right)\left(1-\pi_{1}\right) g_{1} \tag{10}
\end{equation*}
$$

Since

$$
\begin{equation*}
g_{1}-g=\sum \pi_{i} g_{1}-\sum \pi_{i} \pi_{j} g_{1}+\sum \pi_{i} \pi_{j} \pi_{k} g_{1}-\cdots \tag{11}
\end{equation*}
$$

repeated application of Lemma 2 shows that $\operatorname{Re}\left(g_{1}-g\right)$ is bounded in Q^{N}. Since the projections π_{j} commute with each other, (10) implies that $\pi_{j} g=0$ for $1 \leqq j \leqq N$; this says that g extends to a function G holomorphic in U^{N}.

The function $F=f \cdot \exp (G)$ has the desired properties. For F clearly has the same zeros as f, and in Q^{N} we have $F=f_{1} \cdot \exp \left(g-g_{1}\right)$. Since f_{1} and $\operatorname{Re}\left(g-g_{1}\right)$ are bounded in Q^{N}, F is bounded in Q^{N}, hence in U^{N}.

University of Wisconsin and University of California, San Diego

[^0]: ${ }^{1}$ Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant No. 1160-66, and by the Wisconsin Alumni Research Foundation.

