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1. Let X = (Xj 2) be a measurable space, and let r be a class of 
positive measures jx defined on 2 . We consider a set H of nonnegative 
functions belonging to Lp(ji) on X for all /*&"(! 'è.P < °°)> and we de
note by C(H) the convex hull of H. If cr is an arbitrary positive 
measure on X, we define the functional A(r) (r£:C(H), Ll{a)) by 

(1) A(r) = sup j r»dv / f rdo. 

The following result is a useful tool in the treatment of numerous 
extremal problems involving eigenvalues of differential and integral 
equations. 

THEOREM I. If A(r) is the functional defined by (1), then 

(2) sup A(f) = sup A(s). 
reC(H) seH 

The proof of (2) is very simple. Since HQC(H), (2) will follow 
from the inequality 

(3) sup A(r) S sup A(s), 
reC(H) seH 

and it is sufficient to establish (3) for finite sums of the form 

n 

(4) r = «i^l + ' • • + <XnSn, Oik > 0, X «* = 1> ** G # • 

By Minkowski's inequality, we have 

I r*>dfjL Sj^ak\ J sldfi 

and thus, by (1), 
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r /• *"H/P » /• 
(5) I r*dfi S Z) OLkk(sk) I Skdcr. 

Since this holds for all IIELT, it follows from (1) and (5) that 

A(r) I rda S ]C o*A($*) I *̂Ar 

^ sup A(^) X) <** I J * ^ 
*e# fc„i J x 

= sup A(s) j rJ<r. 

Thus, 

A(r) ^ sup A(,y), 

if r is of the form (4). Since these functions are dense in C(H), this 
implies (3) and completes the proof of Theorem I. 

2. As an example of a functional which can be brought into the 
form (1), we consider the lowest eigenvalue X=X(i?) of the differential 
system 

(6) yUn) _ (_l)»XJR(*)y = 0, U(y) = 0, (X = \(R)) 

where R>0, RÇîL1 on an interval [a, b], U(y)=0 is a set of self-
adjoint boundary conditions, and n is a positive integer. By classical 
results, 1/\(R) —sup faRdfij where dfi = u2(x)dx and u(x) ranges over 
the class of functions with the following properties: (a) u satisfies 
the conditions U(u) = 0; (b) u(n) is of class L2 on [a, b] and is normal
ized by the condition f^[uM]2dx = l. In this case, we thus have 

(7) [AC*1/»)]"1 = \1'*>(R) f S.1'***, 
J a 

and Theorem I shows that 

(8) inf \U*(R) f RU*d<r = inf X^T) f Tl'»d<r. 
RllP€C(H) J a Tll*>(~H J a 

If the value of the right-hand side of (8) can be found, (8) thus pro
vides the exact lower bound for the expression (7), where R ranges 
over C(H) or over a subset of C(H) which contains H. 
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3. The use of Theorem I as a source of estimates for functionals 
A(r) is most likely to be successful in the case of convex sets C(H) 
which are spanned by sets H of functions of very simple type. There 
are many such sets which are of interest in the applications. Two 
well-known examples are: 

(a) the class of bounded nonincreasing nonnegative functions on 
an interval [a, b]; in this case H may be identified with the set of 
functions Axt(tÇi(a, b]), where A is a suitable positive constant and 
Xt is the characteristic function of the interval [a, t]; 

(b) the class of nonnegative concave functions on an interval 
[a, b]; this class is spanned by the functions g(x, t) ( / £ [a, &]), where 
g(x, t)=A(x~-a)(b--t) for x £ [ a , /] and g(x, t)=A(t—a)(b—x) for 

*eMJ. 
Another example of this type—which does not seem to be found in 

the literature—is described in the following statement. 
THEOREM II . Let {X, 2 , ju) be a finite positive measure space, and let 

K = K(m, M, rj) be the class of measurable f unctions F on X for which 

(9) -«> <ni^ F ^ M < <*> 

and 

(10) f Fdn = [VM + (1 - ri)m]ii{X) 
J x 

(O^rç^ l ) , where m and M arey respectively, the essential infimum and 
the essential supremum of F on X. 

If H denotes the subset of K consisting of the functions g = m 
+ (M—m)x(Xo)y where XoQX, JJL(XQ) =rj/ji(X)y and x(-X*o) is the char
acteristic f unction of Xoy then KQC(H). 

If we set F=m+(M-m)fy (9) and (10) take the form O g / ^ 1 and 

(100 ffdn = m(X), 

respectively. I t is thus sufficient to prove Theorem II for the case 
m — Q, M—l. Another simplification which can be made is the as
sumption that ƒ be a step-function which takes only the values 
0, e, 2e, • • • , Ne, where eN= 1 and N is an arbitrary positive integer. 
Indeed, ƒ may be approximated by functions ƒ* defined by setting 
f* = ek on the subset of X on which e(k-~8) <f^e(k + l~6), where 6 
is a number in (0, 1), and k = 0, 1, • • • , N. Evidently, inf/* = 0, 
s u p / * = l, and 
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J x J x 

Since fxf*dfi is a continuous function of 0, this shows that 6 may be 
so chosen that fxf*dix=fxfdfi and thus, by (10'), fxf*dfx=rjfx(X). 

If Sk denotes the subset of X on which ƒ èe& (£ = 1, 2, • • • , iV— 1), 
we have 

(11) S*+i£S*, * = 1, • • - , # - 2 

and 

(12) eNn(SN-0 £ f ƒ** ^ € i W i ) . 
^ x 

Since, by (10'), 

(13) f / ^ = i?e^/*(X) = m(X) sup/ . 

(12) implies that 

(14) M ( ^ - i ) â W(X) S M ( 5 0 . 

We denote by 5* a subset of Si for which 

(15) M(5Î) = w(X) 

and which, in addition, is such that 

(16) SI^SN-I. 

The right-hand inequality (14) shows that there are subsets S* of Si 
for which (15) holds and it follows from (11) and the left-hand in
equality (14) that Sf may be so chosen as to satisfy (16). 

We now consider the function 

(17) fi=f-<x(S*). 

Since SfCjSi, we have / i ^ 0 . Because of (16), we have 

sup fi = sup ƒ — e = (N — 1) e 

and, by (13) and (15), 

(18) f M * = ve(N - 1)M(X) - W(X) sup ƒ!. 
• 'x 
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A comparison of (13) and (18) shows that the procedure leading 
from (13) to (18) can be repeated. There will thus exist a subset ,S* 
of X such that the function 

* f2 = f i — ex(S2) 

is nonnegative and satisfies 

f f2d» = Ve(N - 2)n(X) = W(X) sup/ 2 . 
J x 

By applying this process N times, we arrive at a function f^ which 
vanishes identically, and we thus obtain a decomposition 

(19) /= e Z X(st). 

We set 

gk = NeX(st) = x(SÎ), 

and we observe that, by (15) (and the corresponding formulas for 
3 U = 2, . ..,N) 

x 

i.e., gk£:H. Since, with aA==€==iVr""1, (19) may be written in the form 

N N 

ƒ =* 2 a*g*, X] oik = 1, 

this shows that ƒ G C(H), and Theorem II is proved. 

4. As an illustration of the type of explicit inequality obtainable 
by means of Theorem I, we consider the eigenvalue problem (6) with 
the boundary conditions 

u(a) = uf(a) = . . . = = «c»-1) (a) = u™(h) 

= u<n+»(b) = • • • = «<**-« (J) = 0. 

If the coefficient i£(x) belongs to the class listed under (a) in §3, we 
have the following result. 

THEOREM I I I . Let X =\(R) =X(i?; a, b) be the lowest eigenvalue of the 
differential equation 
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(21) y<*«> - (~l)n\R(x)y = 0 

with the boundary conditions (20), where R>0, RÇzL1 on [a, b] and n 
is a positive integer. If R(x) is noninct'easing in [a, b] then 

/

& (%X J} 

[(* - a)**R{x)]u» Ê; — Xx"(l; 0, 1) 
j x — a 2n 

for any p^l. There will be equality in (22) whenever R(x) coincides 
with a characteristic f unction [a, / ] , where / £ ( a , b]. 
If we set 

da = (x — a ) 2 ^ * - 1 * * , 

it follows from (8) that (22) will be established if we can show that 

J* ^ dx i) 

[(* - a)2"**]1'* = f X^(1 ;0 , 1), 
. a x — a 2n 

where Xt~x[#> ^]. Since 

[(x - a)2nx*]1/p = I (* ~ a)^n^~ldt = — (/ - a)2»'*, 
o # — a J « 2w 

this will follow from the identity 

(23) A1/P(x«)(* - ^ ) 2 n / p = X1/P(l; 0, 1). 

To establish (23) we note that, by an elementary argument, 

Mxt', a, b) = X(l; a, t)\ 

moreover, since X(l; a, t) ~inf ft
a[uM]2dx\Jlu2dx]~~1, where u is sub

ject to the boundary conditions (20) (with b=t), it is evident that 
X(l; a, t) = (t — a)~2n\(l; 0, 1). This completes the proof of Theorem 
III . 

For n = l, we have X(l; 0, l)=7r2 /4, and Theorem III yields the 
inequality 

J *h
r dx p /ir\2,p 

[(x - aYR(x)Yi* * -f (-) (p*l) 
a x ~ a 2 \2 / 

for the lowest eigenvalue of the problem 
y" + \R(x)y = 0, y (a) - y'(b) = 0. 

For p = 2, this reduces to the known inequality [2] 

1I2(R) ƒ 
» 7T 

R}l*(x)dx à — 
2 
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5. If the coefficient R(x) in (21) satisfies the condition 0 ^ w g i ? ( x ) 
^M< oo, an application of Theorem II leads to the following result. 

THEOREM IV. Let \=\(R) be the lowest eigenvalue of the differential 
equation (21) with the boundary conditions (20), where 0^m^R(x) 
^ M< oo and n is a positive integer. If the number rj is defined by 

(24) f Rl'*>(x)dx = (6 - a)[Mliv<n + ml^(l - v)]y (0 g rj ^ 1), 

X(«) è X(Uo), 

zekere R0 = m for a^x<a7j+b(l~-rj) and R0 = M for ati+b(l—rj) 
^xSb. 

By (8) and Theorem II, 

J a J a 

if T ranges over the class of functions T = m, + (M—ni)x(Xo), and X0 

is a subset of [a, b] of Lebesgue measure 77(6—0), where 77 is defined in 
(24). Since 

ƒ 6 /• 6 

we thus have 

(25) \(R) è infX(r). 

If yR is the solution of (21)-(20) associated with the lowest eigen
value, it is well known that y% is nondecreasing in [a, b] if R is non-
negative. Since, for a nondecreasing y2, the value of 

/ 
[m+ (M - m)x(Xt)]y*dx 

is largest if X<> is the interval [at)+b(l —rj), b], it follows that 

In view of (25), this proves Theorem IV. 
For n = l, p = l, Theorem IV reduces to a result of Krein [ l ] . 
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In a recent paper [4] F. E. Browder and W. V. Petryshyn have 
shown that if a nonexpansive mapping T: X—>X of a Hubert space X 
into itself is asymptotically regular and has a t least one fixed point 
then, for any x in X, a weak limit of a weakly convergent subse
quence of the sequence of successive approximations {Tnx} is a fixed 
point of T. The main object of the present note is to strengthen con
siderably this result by showing that under the same assumptions the 
sequence {Tnx} is necessarily weakly convergent. 

In §1 we recall some basic definitions and prove two simple lemmas. 
In §2 we prove the weak convergence of the sequence {Tnx} and in 
§3 we discuss the possibility of the extension of this result to Banach 
spaces having weakly continuous duality mappings. In §4 an applica
tion of Theorem 2 stated in §3 to a modified sequence of successive 
approximations is given and, in §5, limits of validity of the first key 
lemma of §1 are discussed. 

1. Let C be a convex closed set in a Banach space X. A mapping 
T: C-+X is called nonexpansive if ||7a; —!T;y|| g||#— y§ for any x, y 
in C. Following [4], a mapping T: C—*C is said to be asymptotically 
regular if, for any x in C, the sequence { Tn+1x — Tnx } = {(!— T) (Tnx)} 
tends to zero as n—»<*>. Finally, a mapping T: C—>X is called demi-
closed if its graph in CXX is closed in the topology of a Cartesian 
product induced in CXX by the weak topology in C and the strong 
topology in X\ i.e., if for any sequence {xn} C.C which converges 
weakly to an xQ in C, the strong convergence of the sequence {Txn} 
to a y0 in X implies that Txo = yo. 


