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1. In this note we will describe a natural setting for harmonic anal­
ysis on the dyadic group, 2W, (also known as the Walsh-Paley group) 
and give a few illustrative results. Details and proofs will appear 
elsewhere. 

The dyadic group is viewed classically as the set of all sequences of 
zeroes and ones with addition (mod 2) defined pointwise, and is sup­
plied with the usual product topology. From our point of view, 2W 

will be the additive subgroup of the ring of formal power series in one 
variable over G F (2). 

The subject of this note is harmonic analysis on the ring of integers, 
O, in the field, K (called a ^-series field), of formal Laurent series 
(with finite principal part) in one variable over GF(p), where p is a 
prime. Such a field K is a particular instance of a local field ; that is, a 
locally compact, totally disconnected, nondiscrete, complete field. 
The £-adic fields are other examples of local fields. The results in this 
note have extensions to Fourier series on the ring of integers in any 
local field and also to multiple Fourier series. These extensions will 
not be given here. 

The idea that 2W might be an instance of a ring of integers in a local 
field developed in a conversation with E. M. Stein. 

2. Let the prime p be fixed. An element xÇiK is represented as 
x = 2 3 Î Zavp

v, av = 0 for v small enough, or equivalently as x = Sa^P"» 
a„ = 0, 1, • • • , or p — l (viewed as elements of GF(p)). Addition and 
multiplication is given by the usual operations in the ring of formal 
power series over GF(p). A topology is given on K by constructing 
basic neighborhoods NXtk= {y= ^b„pv: bp = aPf v<k], for each & £ Z 
and x = ^2avp

v. With this topology K is a locally compact, totally 
disconnected, nondiscrete, complete field. 

We embed GF(p) in K in the obvious way. The series representa­
tions are then convergent series in K and are unique. 

The ring of integers £>= {x: x~ XXo^P1 '} 'ls the unique maximal 
compact subring of K. 
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Let dx be Haar measure on K normalized so | o | = 1 . If aE:K* 
define \a\ by d(ax) = \a\dx. Let | o | = 0 . Then OJ—>|a:| is a non-
archimedian valuation on K. 

The principal ideal in £) generated by p, $ , is the unique maximal 
ideal in D. ? = pO = (p). | $ | = | p | =/>-i. Let £)* = D-SJ$ = {x: \x\ 
= 1}. Any # £ i £ * can be written uniquely as x = $kx', ^ ' G O * . I t fol­
lows that \x\ = 0 iff x = 0, and if x9^0, \x\ = p~k for some integer k. 

REMARK. If x££), x?^0, then | x | = £ - * where fe is the number of 
zeroes that precedes the first nonzero coefficient in the series x 
= ^2oavp

v. With this formulation the function #—»|#| was used by 
Harper [3] in his investigation of potentials on 2W. 

The topology induced by the norm on K agrees with the original 
topology. 

Let $ * = { * : | * | Sp~k}. Then Ç 1 » ^ Ç° = Of |Ç*| ==£-*(!--£-1). 
If X is a continuous unitary character on K+ then x(#) is a pth root 

of unity for all x(EK and x is trivial on some *$k. x is completely deter­
mined by specifying the values of x(V) f ° r a ' l integers p. Any such 
specification with pth. roots of unity is possible provided x(V) = 1 f ° r ? 
large enough. 

An alternate description is given by singling out any nontrivial 
character x and then noticing that all other characters are of the form 
Xu{x)=x(ux) for some uÇzK. In fact, u—*x« is a topological isomor­
phism of K+ onto its dual group, and so we identify K+ with its dual 
group. In the sequel x will represent some fixed character that is 
trivial on O, but is nontrivial on (Ç""1. 

The Fourier transform is initially defined for / G L 1 by f(u) 
z=jKf(x)x(--ux)dx. The following facts play a crucial role. 

LEMMA A. If f (EL1 and f is supported on tym then f is constant on the 
cosets of ty-™ in K+. Iff^L1 and is constant on the cosets of $ n , then f is 
supported on $~~n. Hence if $& is the characteristic function of $-*, then 
p-k$k=$_k. 

The linear spaces of test functions © and tempered distributions 
©' and the Fourier transform on ©' are defined as in [5]. For details 
see [5, §2] and [4]. 

3. O is a locally compact abelian group under addition. Ù can be 
identified with K/£) and every character on £) is of the form Xu re­
stricted to O where u is a coset representative of £) in K. By choosing 
the representatives to be 0 or of the form ]C*=ir«P~* an<3 using the 
usual lexicographic ordering the characters on O are matched to the 
nonnegative integers. The correspondence Xn*-»Xw(n) satisfies: n 
g |u(n)\ ^pn. 
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If n and m are nonnegative integers whose £-adic expansions have 
disjoint nonzero entries then Xn+m^XnXm- F ° r aH xÇzK and nonnega­
tive integers n we have Xn{\T*x) = xPs„(#) if s is a nonnegative integer. 
The sequence {Xpfc}*°«i is the exact analogue of the Rademacher 
functions. 

REMARK. In Fine's basic work on Walsh functions [ l] he made 
essential use of a measure preserving map between 2W and [O, l ] . He 
needed a relation analogous to Xn(p~8%) —X».*^) a n d moved over to 
the reals to perform the required multiplication. Using the ring struc­
ture of £) we may work in D and K, exploiting the unexpected fact 
that in a group of characteristic p, there is an element, p, that "multi­
plies by p~l." 

Let ©(£)) be the linear space of restrictions of members of © to £), 
with the obvious quotient topology. Then ©'(£)), the topological dual 
of ©(D) (called the space of distributions on £)) consists of the re­
strictions of the members of ©' to £). If ƒ£©' (£) ) and <££©(£)) then 
there are ƒ * £ © ' , <£*£© such t h a t / = / * $ 0 , $=<£*$o on £), and the 
action of ƒ on <t> is given by (ƒ, <t>) = (ƒ*, 0) = (ƒ, <£*), where either of the 
last two terms defines the first. 

If ƒ£©' (£ ) ) then the nth Fourier coefficient of ƒ is defined as 
Cn~(f, Xn(-x)^o), When ƒ is integrable on £) this reduces to cn 

~/o/(*0x»(~"x)dx. For ƒ£©' (£) ) we write/~]Cn«ocnXn and call the 
right-hand side the Fourier series of/. 

I f / G L ^ O ) and is defined on all of K by setting it equal to zero 
outside of O, then f ÇzLx(K) and by Lemma A, ƒ is constant on the 
cosets of O in K. I t can be seen that cn =J(u(n)) for all n. 

The Dirichlet kernels are defined by Dn{x) = ]C?«oXn, so that 

n—\ p 

sn(x;f) = X) cnXn(x) = I f(y)Dn(x - y)dx 
««o J i/eo 

-ƒ. ƒ(# - y)Dn(y)dy, x&D 

are the partial sums for ƒ when ƒ is integrable on O. 
A basic fact is : 

THEOREM 1. D^o^p^-nt w = 0, 1, 2, • • • , 

*A*\f) = Pn f /Ö0*V, * £ £ > , ƒ £ iKO). 

As an easy consequence we have: 
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COROLLARY 2. (a) If/GEZ^OO), spn(x; f)—>f(x) a.e. as n->oo. In 
particular spn(x;f)—rf(x) at each point of continuity off, 

(b) / f / ëü fOO) , 1 UP < °°, spn(x;f)—>f in the Lv norm as n-*<*>. 
(c) Iff is continuous on £), spH (x ; ƒ) —>ƒ uniformly as n—* oo. 

4. To simplify some of our considerations we will fix on a particular 
%. Specifically weletx(pv) = 1 if ? ê 0 , and x(Pv) = 8 if p<0 , where S is a 
fixed primitive pth root of unity. Any other character that is trivial on 
£), but non trivial on ty"1 will be of the form Xu for some w££>*. That 
is, it will be a rotation of %• 

From another point of view the orthonormal sequence {Xn (ux)$o} *.0 

is obtained from {xn*o}^-o by a permutation that leaves the blocks 
{xn^ojn^*"1 fixed as a set for £ = 0, 1, 2, • • • , and leaves xo fixed. 
There are exactly as many permissible permutations of the elements 
in a block as there are elements in that block. For example, the pos­
sible arrangements of {xi> X2, * * * , Xv-A a r e given by c, 2c, • • • , 
(p — l)c} where c = l, 2, • • • , p — \ and the multiplication is taken 
modulo p. 

5. We now consider the Fejér kernels, Kn; 

Kn = 1/» E £r = £ (1 - f/»)Xr. 

For | # | = £* let x/==p"~*x, and if x = 0 let #' = 0. We can show that: 

LEMMA 3. 

(a) #pn(*) = (r + i)/2, *y |*| ^ n 

*ƒ h i =#-"+•, j =-1,2, . - - , » . 

(b) | (i - r1)**-^*) I s t e - D A * e o * , 
Re{ (1 - ^JTp-iC*)} - 1/2, x G O*. 

(c) Let xi = 1 + (^ — l)p, #* = s#i, s = 2, 3, • • • , p — 1. 

Then the restriction of p1~3DpS-i(p~1x) to D* w the characteristic f unc­
tion of Uf-fxt+W. 

These relations are consequences of the fact that for all x and n, 
{xPn(x), X2-pn(x), • • • , X(p-i)pn(x)} is a sequence of powers of a £th 
root of unity and that for suitably related n and m, Xn+m = XnXm-

We then get the consequences of Corollary 2 for apU(x; ƒ) using a 
local field variant of a lemma of Fine for part a. 
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REMARK. If p = 2 then KP^(x) ss 1 for x££> and so K2n(x) ^ 0 for all 
rc and x £ £ ) . 

A suitable generalization of Fine's argument, using the facts that 
for r = l, 2, • • • , p — 1, Drpn(x) = Dpn(x)Dr(p~nx) and rpnKrpn(x) 
= pnDpn(x)(r-l)Kr^~nx) +pnKpn(x)Dr(p~nx) yields: 

THEOREM 4. T&e conclusion of Corollary 2 for an(x;f). 

6. From the behavior of the factors pl~8D3)S_i(p~y) we derive the 
following: 

DEFINITION. We say that the limit of ƒ at x in the direction s 
= 1,2, •• • , or p — 1 exists if ƒ (x+5-0) = limje^(X>f(x+h) exists 

THEOREM 5. If fG&iD), / ( x + s - 0 ) exists f or s = l, 2, • • • , p — l, 
/feew <rn(x;f)—>(p — l)~l ^0%ZÎf(x+s • 0) as n—»oo. 

7. Suppose ƒ is a distribution on X. Then 

THEOREM 6. jf$0~]C(ƒ**<>)(«(»))xn. 

This is essentially the Poisson Summation formula. 
If /^oG-^1 and ƒ is locally integrable we obtain 

COROLLARY 7. f\x\zif(x)x(-~ux)dx^f\x\ûxf(u--x)dx, uÇ£K. 

We say that ƒ is locally constant a t x if ƒ is constant on x+ty* for 
some k. I t can be seen that if ƒ is integrable on £) and is locally con­
stant at x then ƒ (x) = X)c„Xn(#). 

Suppose now that ƒ is a radial function on K (f(x) depends only on 
\x\ ), ƒ£><) is integrable, ƒ is locally integrable. Then ƒ is radial and ƒ is 
locally constant at all x^O. Since ƒ is radial we see that (/*<E>0)(̂ ) 
=ƒ(«) if \u\>l. Let Co^<J^o)(0)^f{x\siîOc)dx^flxUif(x)dx, We 
conclude 

ƒ<£() ~ £0 + Z ) / ( « W ) Xn 

and 

ƒ(*) = *> + E K<n))xn(x), 0<\x\ g 1. 

A case of interest is the collection of potential kernels, ƒ«(#) = | #| ~a, 
0 < a < l . In [5] it was shown that fa(u) = 1/Ti(a)\u\a-1 where 
r i (a ) = (l— Pa~l)/(l—p~a). For the a = 0 case, we want log ( 1 / | x | ) . In 
[7] we showed that Gx{x) = { (log {p/\x\ ))(1 •~^~1)/log £}$ 0 , where 
ft(«) = (max(lf |*|))->. 
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These functions satisfy the requirements of the preceding para­
graph and so 

| * | -* 0 ~ (1/Ua)) {(1 - rX)/(l ~ P~«) + E I «(*) Î X» 

I * h = i/rx(a) |(i - r ' ) / ( i - r - ) + Z I «(») l-'x.c*)}-, 

0 < I a; I ^ 1 

and 

log (p/ \x l) $0 = log ova - r1)) {i + E I «<») h*. 

log (1/1*1) /log # = (1 - F 1 ) ' 1 {up + Z I «(») hx»(*) 

0 < I x\ S 1. 

These relations were obtained for 2W by Harper [3]. 

8. The notion of a function of bounded variation has been studied 
on groups related to O at several junctures. I t has been looked at in 
the particular instance of 2W [ l ] and in the more general setting of the 
duals of countable, periodic, abelian groups [8]. The earlier ap­
proaches have used a natural map from the group to [0, 1 ] and then 
used the order imposed on the group by this map to define the varia­
tion of a function. One purpose of these investigations has been to 
obtain the analogue of the classical result that the Fourier coefficients 
of a function of bounded variation are 0(\[n). We will give an order-
free definition of a class of functions with this property. 

DEFINITION. A partition of O is a finite collection 11= {S*}*. i 
such that Sk=zXk+^ for some #*££), PA^O, Skf^Si~0 if kj^l and 
£>= U*S*. 

Let Vk( II) =sup3<=Sfc f(x) — in{xesk fix), where we assume that ƒ is 
real valued. Let Fr=2*Vfc(II), F = supTF^-. 

DEFINITION. We say that ƒ is of bounded variation on £) if V(Re ƒ) 
+ V(lmf) <oo and define V(f) = V(Ref)+ V(Imf). 

REMARK. This notion has its roots in Study's notion of a "function 
of bounded fluctuation," which he showed was equivalent to bounded 
variation [ó]. 

I t can be easily seen that if ƒ is of bounded variation on £), then it 
is continuous except on a countable set. 

• 
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THEOREM 8. If ƒ is of bounded variation on £> and ƒ ~2cnXn then 
cn = 0(l/n) as n~» 00. 

This notion of bounded variation is strictly weaker than the one 
using the order of [O, l ] . 

Using Theorem 4, Theorem 5, and Theorem 8 we obtain: 

THEOREM 9. (a) If f is of bounded variation on D then sn(x:f)—>f(x) 
for all x not in the exceptional countable set where f is not continuous. 

(b) At each # £ D where f'(#+s -0) exists for s = 1, 2, • • • , p--l,then 
Sn(x:f)-+(p-l)-iJ2:}f(x+s-0). 
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