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1. Haefliger reduced the question of embedding manifolds in the 
Euclidian space Rm to a homotopy problem in [ö]. Since then it has 
been of some interest to find examples of ^-manifolds which embed in 
R2n~k for a given k. In particular great effort has been spent studying 
embeddings of the various projective spaces. However, the k that 
were thus obtained were in no cases larger than 5 or 6 (see for example 
[?], [&]> [9])« O u r purpose in this note is to indicate the proofs of the 
theorems that follow. 

THEOREM 1. Let w = 7(8); then RP n (real ^-dimensional projective 
space) embeds in R2n~k where k^2 [log2 (a(n))] — l. (Here a(n) is the 
number of ones in the dyadic expansion of n.) 

THEOREM 2. If n is odd and a(ri) is greater than 4+2*, then CP n 

(complex projective space) embeds in RAn~k with k ^ 3 + i . 

THEOREM 3. If a ( ^ ) ^ l l + 2 * then QPn (quaternionic projective 
space) embeds in RSn~k where k à 5 +i. 

The detailed proof of Theorem 1 appears in [5] so in the sequel we 
will concentrate on giving those modifications which must be made in 
[5] so as to prove Theorems 2 and 3. 

2. A key lemma. Let Mn immerse in R2n~r and set k(n) =8s+2* —1 
(where n + l = (2As+t)c with c odd and 0 ^ g 3 ) . Then for n 2> 3 we 
have: 

LEMMA 2.1. (a) If n is odd there are exactly two isotopy classes of 
immersions MnQR2n. One contains an embedding and the other an im
mersion with a single double point as its only singularity, but both nor
mal bundles have k independent cross-sections where & = min (r, k(n)). 

(b) If n is even and Mn orientable then there are Z isotopy classes of 
immersions MnQR2n only one of which contains an embedding. The only 
immersion with a normal field is the embedding, hence the embedding has 
r normal fields. 

REMARK. Part b is false for nonorientable manifolds for all n [4]. 
PROOF. Part a follows from Whitney's well known results [lO] on 

embeddings and immersions in R2n, and a careful study of how one 
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changes the number of double points in an immersion. The details 
are in [S]. To prove part b note that, according to Hirsch [ l ] , the 
isotopy classes of immersions are in 1-1 correspondence with the 
homotopy classes of cross-sections of the stable (w + 1-dimensional) 
normal bundle. If n is even the homotopy classes of w-plane bundles 
stably equivalent to the stable normal bundle are classified by x/2 
(where % is the Euler class of the bundle). But in this case % is the 
obstruction to finding a cross-section. Finally, we note that the nor
mal bundle to an embedding MndR2n must have Euler class equal 
to zero [3]. 

Fo r / : MnQRn+k we denote by rjf the normal bundle associated t o / . 

COROLLARY 2.2. If nis even, Mn compact and orientable, and if v is a 
subbundle of rjf for some immersion ƒ: MnClR2n~k with k>0, then r/g 

where g is the embedding g: MnQR2n also contains v as a subbundle. 

3. Embedding bundles over projective spaces. Using Corollary 2.2 
and the immersion results of [2] we can prove: 

THEOREM 3.1. (a) If 2p <a(n) —a(p + l) —3, then ?7cp*ccpn embeds 
in Riq where n = p+q + l, 

(b) If 4=p<a(n) — a(p + l)-~ 10, then 77QpacQPn embeds in RBq where 
n-p+q+1. 

The proof follows closely the arguments of §3 of [5], and in particu
lar the argument following the proof of Lemma 3.2. 

THEOREM 3.2. (a) If nis odd then CPnC.RAn with a(n) trivial sections. 
(b) Ifa(n)>3, then QPn<ZRSn witha(n)~3 sections. 

This follows directly from the immersion results of [2] together 
with 2.2. 

4. Double mapping cylinders and the main theorems. Suppose we 
have spaces X, Y, and Z and maps 

ƒ: Y->Z, g: Y->X 

then the double mapping cylinder M(f, g) is obtained from the dis
joint union X\JIX YKJZ by identifying a point (0, 3/) in IX Y with 
ƒ(y) in Z and (1, y) with #(3/) in X. The usual mapping cylinder is 
obtained by setting X = Y and g = id. We denote it by M(f). 

Let FP n represent either CP n or QPn . Let F P 3 be embedded in 
FP n as the set of points whose last p + 1 homogeneous coordinates are 
zero (where n — p+q + 1). Embed FP^ in FP n as the set of points 
whose first q + 1 coordinates equal zero. Finally, set Ep,q equal to the 
set of points with (normalized) homogeneous coordinates (xi, • • • , 
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%q+u Ju ' - • , Jp+i) where ]>2iX^= HH&jyj —1/2. There are evident 
projections TT\: Ep%q—*FPp

t 7r2: EPtq-~*FPq, and we have 

LEMMA 4.1. (a) M(TTI) ^^FP^CFP», 

(b ) iV(7r2)==)7FP«cFPn, 

(c) M(TU TT2) = FP». 

Now, when we have spaces given as double mapping cylinders, we 
can use the following theorem to obtain embeddings. 

THEOREM 4.2. Retaining the previous notation let X be a compact, 
differentiate, n-dimensional manifold and assume we have maps h, T 
so that 

(i) h: XÇ^R1 with rjh = ke®rj (where fj is some subbundle of rjh and 
€ is the trivial line bundle), 

(ii) T:ZÇ^R™ is a topological embedding, 
(iii) there is a topological embedding S: M(f)—>RkXRm so that S 

restricted to Z is T, then there is a topological embedding of M(ƒ, g) in 

The proof is contained in [5 ] ; it is similar to the proof of Theorem 
1.2 of [9]. 

REMARK. When M(f, g) is a manifold and we are in the metastable 
range then Haefliger's theorem [ó] shows that we can assume the em
bedding is differentiable. 

Now, using 4.1, 3.1 and 3.2 it is easy to complete the proofs of 
Theorems 2 and 3 exactly in the manner Theorem 1 is proved in [S]. 
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