A THEOREM ON RANK WITH APPLICATIONS TO MAPPINGS ON SYMMETRY CLASSES OF TENSORS

BY MARVIN MARCUS ${ }^{1}$
Communicated by Gian-Carlo Rota, March 31, 1967

1. Results. Let R be a field containing a real closed subfield R_{0}. The main results of this announcement follow.

Theorem 1. Let $A_{1}, A_{2}, \cdots, A_{p}$ be $m \times n$ matrices with entries in an infinite subset Ω of R containing the natural numbers in R_{0}. Let k be a positive integer and assume that the rank of each A_{i} is at least k. Then there exist nonsingular matrices E and F with entries in Ω such that every set of k rows (columns) of $E A_{i} F$ is linearly independent, $i=1, \cdots, p$.

Corollary 1. If the matrices A_{1}, \cdots, A_{p} in Theorem 1 each have rank precisely k then every k-square subdeterminant of $E A_{i} F$ is nonzero, $i=1, \cdots, p$.

Theorem 2. If A_{1}, \cdots, A_{p} are n-square complex hermitian matrices all of rank at least k then there exists a nonsingular matrix E such that every set of k rows (columns) of $E^{*} A_{i} E$ is linearly independent.

In 1933, J. Williamson [1] gave necessary and sufficient conditions for the compounds of two matrices to be equal. The nontrivial part of his result states the following: if A is a complex matrix of rank r and $r>m$ then $C_{m}(A)=C_{m}(B)$ if and only if $A=z B$ where $z^{m}=1$. A result closely connected to Theorem 1 and generalizing the Williamson result can be proved. We state our theorem in an invariant setting.

Thus, let V be an n-dimensional space over the complex numbers, let H be a subgroup of the symmetric group $S_{m}, m \leqq n$, and let χ be a complex valued character of degree 1 on H. A multilinear function $f\left(v_{1}, \cdots, v_{m}\right)$ is symmetric with respect to H and χ if $f\left(v_{\sigma(1)}, \cdots, v_{\sigma(m)}\right)$ $=\chi(\sigma) f\left(v_{1}, \cdots, v_{m}\right)$ for all v_{1}, \cdots, v_{m} in V and all $\sigma \in H$. Let P be a vector space and f a fixed multilinear function symmetric with respect to H and $\chi, f: V \times \cdots \times V \rightarrow P$, such that for any multilinear function $g, g: V \times \cdots \times V \rightarrow U$, also symmetric with respect to H and χ, there exists a linear $h: P \rightarrow U$ that makes the following diagram commutative:

[^0](1)

Then the pair P, f is called a symmetry class of tensors associated with H and χ, e.g., $H=S_{m}, \chi=\operatorname{sgn}, P=\Lambda^{m} V, f\left(v_{1}, \cdots, v_{m}\right)=v_{1} \Lambda \cdots \wedge v_{m}$, the usual m th Grassmann product. If T is a linear transformation on V then one defines a linear transformation h via the diagram (1) with $U=P, g\left(v_{1}, \cdots, v_{m}\right)=f\left(T v_{1}, \cdots, T v_{m}\right)$. In this case h is called the transformation induced by T and will be denoted here by $K(T)$. If $P=\Lambda^{m} V$ then $K(T)$ is the m th compound of $T, C_{m}(T)$. Another example: if H is the identity group then $P=\bigotimes_{i=1}^{m} V$, the m th tensor space over V, and $K(T)=\Pi^{m}(T)$, the m th Kronecker power of T.

We have the following generalization of Williamson's result to an arbitrary symmetry class of tensors as described above. We do not present a proof here but this generalization depends directly on Theorem 1 for the case $p=2$.

Theorem 3. If the rank of T is r and $r>m$, then $K(T)=K(S)$ if and only if $T=z S$ where $z^{m}=1$.

Corollary 2. If V is a unitary space, the rank of T is r, and $r>m$, then T is normal if and only if $K(T)$ is normal.
2. Proof outline. We say that a set of $m \times n$ matrices $\left(A_{1}, \cdots, A_{p}\right)$ have property R_{k} if there exists a nonsingular n-square matrix F such that every set of k columns of $A_{i} F, i=1, \cdots, p$, is linearly independent: this is abbreviated $\left(A_{1}, \cdots, A_{p}\right) \in R_{k}$. It is clear that if we can prove that any set of p matrices all of rank at least k satisfy $\left(A_{1}, \cdots, A_{p}\right) \in R_{k}$ then Theorem 1 will follow. Observe that if S_{1}, \cdots, S_{p} are nonsingular m-square matrices then

$$
\begin{equation*}
\left(S_{1} A_{1}, \cdots, S_{p} A_{p}\right) \in R_{k} \tag{2}
\end{equation*}
$$

if and only if $\left(A_{1}, \cdots, A_{p}\right) \in R_{k}$.
Now let L be the n-square matrix whose (i, j) entry is i^{j}, i, j $=1, \cdots, n$. It is routine to verify that every subdeterminant of every order of L is nonzero. Next, let t_{1}, \cdots, t_{n} be independent indeterminates over R and define an n-square matrix $L\left(t_{1}, \cdots, t_{n}\right)$ over $R\left[t_{1}, \cdots, t_{n}\right]$ whose (i, j) entry is $t_{i} i^{i}, i, j=1, \cdots, n$. It follows that any specialization of t_{1}, \cdots, t_{n} to nonzero elements of Ω pro-
duces a matrix every one of whose subdeterminants is nonzero. According to (2) we can take $\left(A_{1}, \cdots, A_{p}\right)=\left(H_{1}, \cdots, H_{p}\right)$ where H_{i} is the Hermite normal form of $A_{i}, i=1, \cdots, p$. Next, consider the matrices $B_{i}=H_{i} L\left(t_{1}, \cdots, t_{n}\right)$ and define the polynomial $p_{i}\left(t_{1}, \cdots, t_{n}\right)$ to be the product of all $C_{n, k}$ entries in the first row of the k th compound matrix of B_{i}, i.e., $C_{k}\left(B_{i}\right)=C_{k}\left(H_{i}\right) C_{k}\left(L\left(t_{1}, \cdots, t_{n}\right)\right)$. The fact that A_{i} and hence H_{i} has rank at least k implies that there exists a specialization of p_{i} which is not zero. Hence the polynomial

$$
P\left(t_{1}, \cdots, t_{n}\right)=\prod_{i=1}^{p} p_{i}\left(t_{1}, \cdots, t_{n}\right)
$$

is not zero. It follows from a standard theorem on polynomials that there exist nonzero elements ξ_{1}, \cdots, ξ_{n} in Ω for which $P\left(\xi_{1}, \cdots, \xi_{n}\right)$ $\neq 0$. In other words, there exist nonzero ξ_{1}, \cdots, ξ_{n} in Ω for which every entry in the first row of each of $C_{k}\left(H_{i} L\left(\xi_{1}, \cdots, \xi_{n}\right)\right)$ is nonzero, $i=1, \cdots, p$. This means that every set of k columns of each of $H_{i} L\left(\xi_{1}, \cdots, \xi_{n}\right)$ is linearly independent and proves the result.

The rest of the results announced above follow from Theorem 1.

Reference

[^1]
[^0]: ${ }^{1}$ This research was completed under Grant AFOSR 698-67 awarded by the Air Force Office of Scientific Research.

[^1]: 1. J. Williamson, Matrices whose sth compounds are equal, Bull. Amer. Math. Soc. 39 (1933), 108-111.

 University of California, Santa Barbara

