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The convolution transformation 

(1) F(s) = f(t)G(s - i)dt 

considered by Hirschman and Widder [ l ] has a kernel G of the form 

1 Ç i0° exp (ZT 

liriJ-in E(z) 

1 r *'°° exp (ZT) 
(2) G(r)=— ~^~dz 

where 

(3) E(z) = e x p ( - ^ 2 + bz)fl(l --—) exp(z/av), 

the c, by and av are real, c^O, a ^ O , |^|—>oo, and ] C a ^ 2 < ° ° - I*1 a 

previous note [2] we extended the convolution transformation to a 
certain class of generalized functions in the case where c = 0 in (3). 
On the other hand, if we substitute the previously neglected factor 
exp( — cz2) in place of E(z) in (2) and normalized by setting c = l, we 
obtain 

(4) G(r) = k(r, 1) 

where 

k(r, t) = exp(-r2/4/)/(47r/)1/2, - <*> < r < oo, 0 < / < oo. 

The convolution transformation (1) then becomes the Weierstrass 
transformation [ l ; Chapter V I I I ] : 

(5) F(s) = — - ~ ƒ °°f(r) exp[ - (* - r)V4]<*r. 

Here, we round out our previous results by extending (5) to certain 
generalized functions. 

Let a and b be fixed real numbers with a<b. Let pa,b(r) be a posi-
1 This work was supported by the Air Force Cambridge Research Laboratories, 

Bedford, Mass., under contract AF19(628)-2981. 
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tive (never zero) function on — oo < r < oo which is smooth (i.e., has 
continuous derivatives of all orders) and satisfies 

Pa,b(r) = e x p ( - i r / 2 ) , 1 < r < oo, 

= exp( — ar/2), — oo < r < •— 1. 

^„,6 is the linear space of all complex-valued smooth functions $(r) 
on — oo < r < oo such that for each # = 0, 1, 2, • • • 

7„(0) = max sup | exp(r2/4)pa>6(r)0(n)(r) | < oo. 
Orgp^n —oo<T<oo 

We assign to %Y"0,& the topology generated by the set of seminorms 
{yn}, thereby making V?a,b a sequentially complete countably 
normed space [3, p. 6] . The dual V?'atb of W0)b is a space of generalized 
functions, whose restrictions to Schwartz's space $) of smooth func­
tions of compact support are Schwartz distributions [4]. If a < Re 5 
<b, then k(s —r, 1) as a function of r is in W0)&. Moreover, if c^a 
and b^d, then V?a,b is a subset of VPe,df and the topology of *Wa,b is 
stronger than that induced on it by WC(d. Consequently, the restric­
tion of /G'Wé.d to %y"a,& is in W ^ . In view of these facts, we can de­
fine a generalized Weierstrass transformation as follows: 

Let ƒ be a member of °W£fô for some a and fr (a<b). Let 0*1 be the 
infimum of all a and cr2 the supremum of all b for which ƒ£%¥*«,&. 
Then, the Weierstrass transform of the generalized function ƒ is 
defined by 

(6) F(s) = (f(r), *(j - r, 1)), en < Re 5 < er2. 

This has a sense as the application of /G%v"i,& to k(s~r, l )£W a ,b , 
where for each given 5 we choose a and & such that c r i < a < R e s<b 
<<r2. 

THEOREM 1. F(s) is an analytic function on the strip cri<Re s<o"2f 

and for each n — 1, 2, 3, • • • 

(7) Dn
8F(s) = </(r), Z>".*(* - r, 1)), Z>. = d/ds. 

Moreover, on any closed sub strip a ^ R e s = o,Sb(<ri<a<b<<X2), 

(8) I F (a + iœ) | g exp(a>2/4)£( | w | ) 

where B is a polynomial which depends on ƒ and the choice of the sub-
strip. These conditions are also sufficient in order for F(s) to be a 
Weierstrass transform according to (6). 

The proof of this theorem is similar to that of [2; Theorem l ] . 
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The next theorem extends the Hirschman-Widder inversion for­
mula [l, p. 191] to our generalized transformation. 

THEOREM 2. Let a be any fixed real number such that <xi<<r<(r<2.. 
Then y in the sense of weak convergence in the space 3D' of Schwartz dis­
tributions, 

ƒ 00 

k(œ + ir — i<r, t)F(a + iu>)dec = j f ( r ) . 
- - - o o 

This is proven by justifying the steps in the following formal 
manipulations. For <£££), 0<t<l, and (ri<a<o*<&<or2, 

<£ k(o) + ix — icr, t)F(<r + ioo)do), <j>(x) 

ƒ 00 

k(œ + ix — ia, /)(ƒ(?*), k(a + iw — r , l))Jco, </>(#) 
- 0 0 

= ((fir), I &(co + i# — ia, t)k(<r + tco — r, l ) J w \ <£(#) 

= <*(*), </(r), *(* - r, 1 - 0 » 

= <ƒ« , <*(*), *(* - r, 1 - 0 » 

-></(r),*(r)>, / - > 1 - . 

By combining these results with those of [2], we can extend the 
convolution transformation (1), wherein G is given by (2), to the 
space £'Ctd of generalized functions defined in [2 ] ; we also obtain an 
inversion formula for it. 
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