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1. Introduction. For the terminology and notation not explained 
below the reader is referred to [ l ] and [2]. 

Let L be a Riesz space. A positive linear functional 0 ^ 0 £ L ~ is 
called an integral whenever for every decreasing sequence {un} of 
nonnegative elements of L, infw un = 0 implies infn <t>(un)=0. A posi­
tive linear functional 0^S<££L~ is called normal whenever 0 ^ w r £ L 
and uT i 0 (i.e., for every pair uTV uT2 there is an element uTz such that 
uTz ginf (uTV UT2) and inf uT = 0) implies infT <j>(uT) = 0. Finally a positive 
integral is called singular whenever 0^x=<£ a n d X *s a normal posi­
tive linear functional implies x ~ 0 - Every positive linear functional 
can be written uniquely as the sum of a normal integral and a singu­
lar integral. 

From the point of view of the theory of positive linear functionals 
it seems natural to ask the question. Is every integral normal? The 
following example will show that the answer to this question is in 
general negative. 

Let L be the Riesz space of all real bounded Borel measurable 
functions on the unit interval O^x^ 1 and let <£(ƒ) ~flf(x)dx be the 
positive linear functional determined by the Lebesgue integral. Then 
<j> is an integral in the sense defined above but <£ is not normal. In fact 
0 is a singular integral. Furthermore, observe that L is Dedekind 
(T-complete (i.e., every countable subset which is bounded above has a 
least upper bound). 

The answer to this question turns out to be quite different if we 
restrict the class of Riesz spaces to be considered to a special class of 
Riesz spaces namely the class of Dedekind complete Riesz spaces. 
(A Riesz space L is called Dedekind complete whenever every non­
empty subset of L which is bounded above has a least upper bound.) 
For this class of Riesz spaces we will indicate below that the state­
ment "every integral is normal" is logically equivalent to the state­
ment "every cardinal is nonmeasurable." A cardinal a is called 
measurable whenever there exists a probability measure on the alge­
bra of all subsets of a such that every countable subset has measure 
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zero. Let L be a Riesz space. Then by c{L) we denote the smallest 
cardinal with the property that the cardinal of every maximal dis­
joint system of L is bounded by c(L). We have shown that if L is 
Dedekind complete and c(L) is nonmeasurable then every integral on 
L is normal. In particular, if c(L) is less than the first inaccessible 
cardinal, then every integral is normal on L. Since recently it was 
shown by Tarski that even a great many inaccessible cardinals are 
nonmeasurable and since the problem whether one can consistently 
assume the existence of measurable cardinals is still open it follows 
that except possibly for very exceptional Dedekind complete Riesz 
space, every integral is normal. I t is known, however, that it is con­
sistent with the other axioms of set theory that every cardinal is non-
measurable. 

2. A discussion of the main result. If there exists a measurable 
cardinal a, then it is easy to see that this measure induces on the 
Dedekind complete Riesz space of real bounded functions on a an 
integral which is not normal. For the converse we need the following 
two results. 

Although not every integral is normal we were able to show (The­
orem 49.1 of [l]) that every integral is normal on a large ideal. To be 
more precise the following result holds. 

THEOREM 1. Let L be a Riesz space and let 0<(j>C:L~ be a positive 
linear integral on L. Then there exists an ideal I^QL (i.e., I<t> is a linear 
subspace of L and \g\ ^ | ƒ(, f^I<f> implies g£iV) such that 1$ is full, 
i.e., for every O^/GZ, there is an element 0 < w G ^ such that u^ \f\, 
and the restriction of 4> to 1$ is normal. Equivalently, if Q<<j>ÇzL~ is a 
singular integral, then its null ideal N<}>= {ƒ: </>(|/| ) = 0 } is full in L. 

In addition to Theorem 1 we shall need the following theorem con­
cerning complete Boolean algebras, which is an easy consequence of 
Theorem 4.1(h) of [4]. 

THEOREM 2. Let B be a complete Boolean algebra and let A QB be a 
nonempty subset of B. Then there exists a disjointed subset {aa: a* £ 2 } 
(i.e., (Ti9£a2 implies a^Aa^t — O) such that sup ^4=sup (aa: cr£2) 
and f or every a there is an element aÇ£A such that aa^a. 

We shall now formulate and sketch a proof of the main result. 

THEOREM 3. Assume there are no measurable cardinals and assume 
that L is a Dedekind complete Riesz space. Then every integral on L is 
normal. 
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The proof of this result is based on Theorem 1. If L has an integral 
<f> which is not normal, then according to Theorem 1, there is no loss in 
generality to assume that its null ideal N^ is order dense in L. Thus 
for an element 0<u(EL with <j>{u) — \ there is an upward directed 
system {uT} of positive elements of N+ such that u = sup uT. Consider 
the projection PT on the band generated by uT and the projection P 
on the band generated by u. Then for all r, <t>(PTu) = 0, <j>{Pu) = (/>(u) = l 
and sup P7—P. Thus, by Theorem 2, there exists a system (Qff: cr£2) 
of mutual disjoint projections such that sup Q<r~P and for every 
GÇJZ there is an element r such that QffSPr> Then it can be shown 
that card (2) is measurable. The measure is defined as follows: n(X) 
= <£(sup Qa(u) : GÇZX) for every nonempty subset XQ2 and we define 
/*(*)= 0. 

An examination of the proof shows, however, that also the follow­
ing slightly more general result holds. 

THEOREM 4. Let L be a Riesz space which satisfies the following two 
conditions: (i) Every band is a projection band and the Boolean algebra 
of all projections of L is complete, (ii) For every 0 <uÇzL} c(Iu) is non-
measurable, where Iu is the ideal generated by u. Then every integral on L 
is normal. 

Observe that the Riesz space of all real functions on a set whose 
cardinal is nonmeasurable and which takes on only finitely many 
different values has the properties (i) and (ii) but is obviously not 
Dedekind complete. 

3. An application. Let X be a nonempty set and let Rx be the 
Riesz space of all real functions on X. Then Theorem 4 enables us to 
express the nonmeasurability of X in an equivalent form in terms of 
the positive linear functionals on Rx. In fact, we can prove the fol­
lowing theorem which extends Theorem 3.1 of [3]. 

THEOREM 5. The nonempty set X has a nonmeasurable cardinal if 
and only if for every positive linear functional <j> on Rx there exist ele­
ments xi, • • • , XnÇzX and positive constants #i, • • • , an such that 
*(ƒ) = Z?- i o<f(xi) for allfGR*. 

In addition to Theorem 4 the proof makes essential use of the fact 
that every positive linear functional on any Rx is an integral. (See 
[2, Example 20.8 in Note VI] and for the corresponding result for 
the Riesz space of all real continuous functions on an arbitrary topo­
logical space we refer to [l, Example 50.7 in Note XV a].) Indeed, if 
a positive linear functional on Rx is not of the desired form, then 
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4>(f) -*(/)-2(f(^({»}): *€*),ƒ€/» and * - {* :0 ( {*} )P«O} 

is a nonzero integral which vanishes on all singletons, and so X is 
measurable. For the converse we use Theorem 4 in an essential way. 
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