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1. M. Hirsch [3] has shown that the immersion problem for mani
folds is just a cross section problem for the stable normal bundle. Our 
object here is to find conditions under which sections of the tangent 
bundle will imply sections in the normal bundle (and conversely). 
First we need some notation. 

Given an integer /, let j(t) be the maximum integer such that the 
2*-f old Whitney sum of the Hopf bundle over RP^l)~l is trivial. If £ 
is a stable bundle, let gd(£) denote the geometric dimension of £. 

THEOREM A. Let Mm be an m-dimensional manifold, w ^ 2 ' - l , 
whose stable tangent bundle TO is trivial over the (j(t) — 1)-skeleton. If 
m—j(t) + l is odd or if Hq(M; Zp)=0 for all p5*2 and g^O, m, then 
gd( r 0 )^w— j(t) + l implies gd(—ro)^m—j(t) + l. 

To illustrate the strength of Theorem A we offer 

THEOREM B. Let m = 2', then RPm~l immerses in R2m~iw+1 but not 
in JR2m-;(0. 

The negative result in Theorem B is due to James [4]. Milgram in 
[s] has obtained linear immersions of RPm which agree with those of 
Theorem B only if m = 15 and 31. 

2. Outline of the proofs. Let X be a space, then by X [k] we denote 
the èth-Eilenberg subcomplex of the space X, i.e., X[k] is (k — 1)-
connected and there is a m a p / : X[&]—»X such t h a t / * : 7r3(X"[fe]) 
=wq(X) for q^k. Let BOn and BO denote, respectively, the classify
ing spaces of w-plane bundles and stable bundles. The natural map 
BOn-^BO induces maps p: BOn[k]-*BO[k] for all k. 

The key step in the proof of Theorem B is 

THEOREM C. For each m < 2* there exists an PL-space E, an H-map 
(/>: E—>BO\j(t)] and a fiber map \p: BOn(t,m) [j(t)]—>E such that 

BOn(t,m)[m]^BO[j(t)] 

E 
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is commutative, where nit, m)—m—j(t) + l. Let F be the fiber of \f/. If 
n(t, m) is odd, then F is m-connected. If n(t, m) is even, then F is 
(n(t, m) — l)-connected and wk(F),for n(t, m) ^k^m is either zero or a 

finite group of odd order. 

We will now outline the proof of Theorem C. We will assume t and 
m are fixed integers. 

As in [2] or [5], we can construct a fiber space <£o*. X—+BO as a com
posite of principal fiber spaces 

(2.1) X = X8 -> X8_x -> > Xo - BO 

where Xk—>Xu-i has fiber a product of Eilenberg-Mac Lane spaces of 
type (Z, q) or (Z2, q). There is a fiber map \f/0: BOn—^X such that 

BOn^BO 

(2.2) *o \ f <t>o 
X 

is commutative. If F is the fiber of i/'o, then F satisfies the conditions 
of Theorem C and wre have, 

PROPOSITION 2.3. Let / > 4 , then the diagram of Theorem C is induced 
by diagram (2.2) under the natural map BO[j(t)]—>BO. 

Because of (2.3), it suffices to prove that E is an i7-space and that 
4> is an H-map. 

Now the fiber space E—>BO[j(t)] is a composite of principal fibra-
tions, 

(2.4) £ = £ . - > Es-X -> > Eo = BO[j(t)] 

induced by (2.1). Let Fk be the fiber of Ek~>Ek-i. Then Ek—>Ek-i is 
classified by a map fk: Ek-\-+BFk where BFk is the classifying space 
of Fk. Assume that E&__i is an iJ-space and that 0A-I : -EA-I—»-EO is an 
iJ-map. Then Ek will be an iJ-space if the ^-invariants, i.e. the images 
of the fundamental classes of BFk are primitive in H*(Ek-i). We have 
a principal fiber space 

K(Jt,j(t - 1) - 1) -> BO[j(t)] - • SO[/(* - 1)] 

where Jt = Z or Z2, accordingly with [ l ] . Let 

(2.5) £ = £ s -> » l o = iT(/ ( , i(/ - 1) - 1) 

be the induced fibrations over £ 0 of (2.4). 
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Stong in [9], has determined the mod 2-cohomology of BO[»]. 
Using this result we prove, 

PROPOSITION 2.6. For fe = 0, 1, • • • , s, the natural map E&—*E& in
duces a monomorphism H*(Ek)-±H*(Ek) in dimensions 2§2' — 1 . 

Again inductively, if we assume that Ek-i is an iJ-space, then 
Ek~i is an iJ-space and Ek-i—^Ek-i is an iJ-map. Therefore from (2.6) 
follows 

PROPOSITION 2.7. If the k-invariants of Ek—>Ek~.i are primitive, then 
Ek and Ek are H-spaces and Ek—>Ek is an H-map. 

In fact, we show that Ek is an infinite loop space. Again induc
tively, if Ek-i is an infinite loop space and Q~rEk-\ denotes a space 
such that Çlr(QrrEk-.\) = Ek^i, it suffices to show that the fe-invariants 
of Ek—>Ek-.i are in the image of 

(2.8) 2 ' Efc_i -^ Û-'£,c_i -» QrrBFk 

where g is homotopic to the adjoint of the identity map Ek-\—>Ek-i. 
In order to achieve this, we pass to Thorn complexes. First observe 

that for r^2\ E0 is the fiber of BOr\j(t)]-*BOrlj(t-l)]. Assume 
from now on, that r^2K Let 

(2.9) E' = El - • EU -> • Ei = BOr[j(t)] 

be the tower induced over Ei from (2.4). Then the tower (2.5) is 
induced from (2.9) by the mapping E0—*Ei. Now let rjr be the canoni
cal bundle over Ei and consider the induced bundles over the spaces 
Ek and Ek. Let MEk and MEk denote the corresponding Thorn com
plexes. We have a sequence of maps 

(2.10) ME' = MEI -> MEU-^ > MEi. 

LEMMA 2.11. In dimensions less than or equal to r+m, the map 
ME£—*MEk-i looks like a principal fiber map, with fiber a product of 
Eilenberg-Mac Lane complexes and k-invariants { U^Jki}, where the ki 
are the k-invariants f or E£—*E{-\. 

Let Yq be the universal example of an integral cohomology class y 
of dimension q such that 

(1) all primary cohomology operations vanish on y, 
(2) all operations that raise dimension by less than j(t) vanish on y. 
Then we need the following 
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THEOREM 2.12. There exists a tower of fiber spaces 

K(Z,r)*-Ai< <— A. 

The fiber Gk at each stage is a product of Eilenberg-MacLane spaces. 
If k>l, then Gk — Çl~rFkXSk where Fk is the (k-l)-stage of an Adams 
resolution over Z% of Vn through dimension m — 1 and Sk is the k-stage of 
an Adams resolution over Z2 of Sr through dimension T+j(t) — 1. Also 
G i = I I î - i x(£*» r+2i-l)X^~rF1. In addition, the fiber of p8 is 
(m — 1) connected. 

The proof of (2.12) follows closely that of [6, Theorem A]. 
Let fk be the composite Ak-^BGk+i-^Qrr~1Fk+i where the first map 

classifies Ak+i—>Ak and the second is the obvious projection. 

THEOREM 2.13. There is a mapping \k-\' ME^^Ak-i such that 
A*-I/>*-I(Y»)= UUki, where %• ranges over the fundamental classes of 
Ql-r-ipk and ihe fc. over the k-invariants of El —>.£jUi-

Now we are ready to indicate how Theorem C follows. Observe that 
MEk = Zr(EkKJpt)f since the induced bundle over Ek is trivial, and let 
ik: 2rEk->MEl be the composite XrÊk—> M Ek-^ M El. 

Suppose that we have proved Ek has the structure of an infinite 
loop space, then the following lemma implies E^+i has the structure of 
an infinite loop space: 

LEMMA 2.14. There is a commutative diagram, up to homotopy, 

Pk 

2rEk-+ti~rEk 

[ik ijk 

>k —* s±k —» nrk+i M El -* Ak -+BFt 

where \k is given in (2.13). pk is the adjoint of the identity map andfkjk 
classifies the bundle QrrEk+i—:>QrrEk. 

The proof of Theorem C is then completed. 
Theorem A follows by establishing a mod p version of (2.13) and 

using the fact that the top class of the Thorn complex of the normal 
bundle to a manifold immersed in euclidean space is stably spherical. 

Finally, Theorem B follows from Theorem A by using the existence 
of tangent vector fields for real projective spaces due to Hurwitz-
Radon. 
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