SYMMETRY IN NONSELFADJOINT STURMLIOUVILLE SYSTEMS

BY J. W. NEUBERGER

Communicated by P. R. Halmos, April 27, 1967
Suppose that $a<b$ and C is the inner product space of all continuous real-valued functions on $[a, b]$ such that $\|f\|=\left(\int_{a}^{b} f^{2}\right)^{1 / 2}$ if f is in C. Denote by each of p and q a member of C such that $p(x)>0$ for all x in $[a, b]$. Denote by each of W and Q a real 2×2 matrix and denote by C^{\prime} the subspace of C consisting of all f in C such that $\left(p f^{\prime}\right)^{\prime}-q f$ is in C and

$$
W\left[\begin{array}{c}
f^{\prime}(a) \\
p(a) f^{\prime}(a)
\end{array}\right]+Q\left[\begin{array}{c}
f^{\prime}(b) \\
p(b) f^{\prime}(b)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Denote by L the transformation from C^{\prime} to C such that if f is in C^{\prime}, then $L f=\left(p f^{\prime}\right)^{\prime}-q f$. Assume for the remainder of this note that L has an inverse T. The purpose of this note is to point out that if $T \neq T^{*}$ it is nevertheless true that T is very closely related to a symmetric operator. Specifically T is a dilation (via the two-dimensional space of solutions to the homogeneous equation) of a symmetric operator. This fact permits an analysis of T using the theory of completely continuous symmetric operators. This suggests a worthwhile alternative to the approach taken in [1, Chapter 12], in which the general theory of completely continuous operators is used.

Denote by S^{\prime} the subspace of C consisting of all f so that $\left(p f^{\prime}\right)^{\prime}$ $-q f=0$ and denote by S the orthogonal complement in C of S^{\prime}. Denote by P the orthogonal projection of C onto S^{\prime}.

Theorem 1. If $T \neq T^{*}$, then $T g=T^{*} g$ if and only if g is in S.
Theorem 2. If V is the restriction of $(I-P) T$ to S, then $V^{*}=V$.
Indication of Proof of Theorem 1. From [2] one has that if g is in C, then the member f of C^{\prime} so that $L f=g$ is such that

$$
\left[\begin{array}{c}
f(t) \\
p(t) f^{\prime}(t)
\end{array}\right]=\int_{a}^{b}\left[\begin{array}{l}
K_{11}(t, j) K_{12}(t, j) \\
K_{21}(t, j) K_{22}(t, j)
\end{array}\right]\left[\begin{array}{l}
0 \\
g
\end{array}\right]
$$

for all t in $[a, b](j(x)=x$ if x is in $[a, b])$ where

$$
\begin{aligned}
& {\left[\begin{array}{l}
K_{11}(t, u) K_{12}(t, u) \\
K_{21}(t, u) K_{22}(t, u)
\end{array}\right]=K(t, u)} \\
& \qquad=\left\{\begin{array}{l}
M(t, a)[W+Q M(b, a)]^{-1} W M(a, u) \quad \text { if } a \leqq u \leqq t \\
-M(t, a)[W+Q M(b, a)]^{-1} Q M(b, a) M(a, u) \text { i } \mathrm{f} t<u \leqq b
\end{array}\right.
\end{aligned}
$$

and M is such that

$$
\begin{gathered}
M(t, u)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\int_{u}^{t}\left[\begin{array}{cc}
0 & 1 / p \\
q & 0
\end{array}\right] M(j, u) \text { for all } t, u \text { in }[a, b] . \\
M \text { is denoted by }\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
\end{gathered}
$$

$Q M(b, a)$ by Z and $\operatorname{det}[W+Z]$ by Δ. Straightforward computation gives that
$\Delta K_{12}(t, u)$

$$
\begin{aligned}
& =\left\{\begin{array}{c}
A(t, a)\left[\operatorname{det} W+(\hat{Z} W)_{11}\right] B(a, u)+B(t, a)(\hat{Z} W)_{21} B(a, u) \\
+A(t, a)(\hat{Z} W)_{12} D(a, u)+B(t, a)\left[\operatorname{det} W+(\hat{Z} W)_{22}\right] D(a, u) \\
\text { if } a \leqq u \leqq t \\
-\left\{A(t, a)\left[\operatorname{det} Z+(\hat{W} Z)_{11}\right] B(a, u)+B(t, a)(\hat{W} Z)_{21} B(a, u)\right. \\
\left.+A(t, a)(\hat{W} Z)_{{ }_{12}} D(a, u)+B(t, a)\left[\operatorname{det} Z+(\hat{W} Z)_{22}\right] D(a, u)\right\} \\
\text { if } t<u \leqq b
\end{array}\right. \\
& =\left\{\begin{array}{c}
\begin{array}{c}
B(t, u) \operatorname{det} W-A(t, a) B(u, a)(\hat{Z} W)_{11}+A(t, a) A(u, a)(\hat{Z} W)_{12} \\
-B(t, a) B(u, a)(\hat{Z} W)_{21}+B(t, a) A(u, a)(\hat{Z} W)_{22} \\
-B(t, u) \operatorname{det} Z+A(t, a) B(u, a)(\hat{W} Z)_{11}-A(t, a) A(u, a)(\hat{W} Z)_{12} \\
+B(t, a) B(u, a)(\hat{W} Z)_{21}-B(t, a) A(u, a)(\hat{W} Z)_{22}
\end{array} \\
\text { if } t<u \leqq b,
\end{array}\right.
\end{aligned}
$$

since $A(x, y)=D(y, x), B(x, y)=-B(y, x)$ and $C(x, y)=-C(y, x)$ if x, y are in $[a, b]$.

From this it follows that

$$
K_{12}(y, x)-K_{12}(x, y)=(\operatorname{det} W-\operatorname{det} Q) B(y, x) / \Delta
$$

for all x, y in $[a, b]$. Noting that if g is in C, then the member f of C^{\prime} so that $L f=g$ is given by $f(t)=\int_{a}^{b} K_{12}(t, j) g$ for all t in $[a, b]$, one sees that $(T g)(t)=\int_{a}^{b} K_{12}(t, j) g$ for all t in $[a, b]$ and g in C. Hence if g is in C and t is in $[a, b],\left(T^{*} g\right)(t)=\int_{a}^{b} K_{12}(j, t) g$ and $(T g)(t)$ $-\left(T^{*} g\right)(t)=\Delta^{-1}(\operatorname{det} W-\operatorname{det} Q) \int_{a}^{b} B(t, j) g$. Hence if g is in S and t is
in $[a, b],(T g)(t)-\left(T^{*} g\right)(t)=0$ since $B(t, j)$ is in S^{\prime} inasmuch as $B(j, t)=-A(j, a) B(t, a)+B(j, a) A(t, a)$.

Suppose $T \neq T^{*}$. Then $\operatorname{det} W-\operatorname{det} Q \neq 0$. Hence if g is in C and $T g=T^{*} g$, then $0=\int_{a}^{b} B(t, j) g=-A(t, a) \int_{a}^{b} B(j, a) g+B(t, a) \int_{a}^{b} A(j, a) g$ for all t in $[a, b]$ and hence $\int_{a}^{b} B(j, a) g=0=\int_{a}^{b} A(j, a) g$. Therefore g is in S.

Proof of Theorem 2. If each of h and g is in $S,(V h, g)$ $=((I-P) T h, g)=(T h,(I-P) g)=\left(h, T^{*} g\right)=(h, T g)=((I-P) h, T g)$ $=(h,(I-P) T g)=(h, V g)$ and so $V^{*}=V$.

References

1. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955.
2. J. W. Neuberger, Concerning boundary value problems, Pacific J. Math. 10 (1960), 1385-1392.

Emory University

