5. D. R. McMillan, Jr., A criterion for cellularity in a manifold, Ann. of Math. 79 (1964), 327-337.
6. J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1-7.
7. T. M. Price, A necessary condition that a cellular upper semicontinuous decomposition of $E^{n} y$ ield E^{n}, Trans. Amer. Math. Soc. 122 (1966), 427-435.

The University of Wisconsin

THE C^{*}-ALGEBRA GENERATED BY AN ISOMETRY ${ }^{1}$

BY L. A. COBURN

Communicated by P. R. Halmos, April 24, 1967

1. Introduction. In this paper, I determine the structure of any C^{*}-algebra generated by an isometry. Using a theorem of Halmos [3], the problem is reduced to the study of C^{*}-algebras $a(A)$ generated by A and A^{*} where (i) A is unitary, (ii) $A=S_{\alpha}$ with S_{α} the shift of multiplicity α, and (iii) $A=W \oplus S_{\alpha}$ with W unitary. In case (i), the resulting algebra is isometrically ${ }^{*}$-isomorphic to the algebra $C(\sigma(A))$ of all complex-valued continuous functions on the spectrum of A and nothing more need be said. In cases (ii) and (iii), it turns out that $\mathbb{Q}(A)$ is isometrically ${ }^{*}$-isomorphic to $\mathbb{Q}\left(S_{1}\right)$ so that $\mathbb{Q}(A)$ is independent of W and α. In each of these cases, there is a unique minimal closed two-sided ideal $\mathfrak{g}(A)$ such that $\mathfrak{a}(A) / \mathscr{G}(A)$ is isometrically ${ }^{*}$-isomorphic to $C(T)$, where T is the perimeter of the unit circle. The ideal $\mathcal{G}(A)$ is determined spatially in the cases $A=S_{1}$ and $A=W \oplus S_{1}$.

We begin with the notation. For our purposes, all Hilbert spaces are complex and all ideals are closed and two-sided. If $\left\{e_{n}: n=0,1\right.$, $2, \cdots\}$ is an orthonormal basis for a Hilbert space H then the shift $S=S_{1}$ is defined by $S e_{n}=e_{n+1}$. By a shift of multiplicity α is meant the α-fold direct sum $S \oplus S \oplus \cdots \oplus S$ acting on $H \oplus H \oplus \cdots \oplus H$. The orthogonal projection onto the one-dimensional subspace of H spanned by e_{n} is denoted by P_{n}.

If H (or H_{i}) is a Hilbert space then $\Omega(H)$ (or $B\left(H_{i}\right)$) denotes the algebra of all bounded operators with the usual norm topology and \mathscr{K} (or \mathscr{K}_{i}) denotes the ideal of all compact operators. The natural quotient map from $\mathfrak{B}(H)$ to $\mathfrak{B}(H) / \mathscr{K}\left(\mathscr{B}\left(H_{i}\right)\right.$ to $\left.\mathbb{B}\left(H_{i}\right) / \mathcal{K}_{i}\right)$ is given by

[^0]$\pi\left(\pi_{i}\right)$. If A is an operator in $ß(H)$, the C^{*}-algebra generated by A will be named $\mathbb{Q}(A)$ or just \mathbb{Q} when there is no possible doubt about A. An operator A is called a Fredholm operator if $\pi(A)$ is invertible. The set of all Fredholm operators in $囚(H)$ is denoted by \mathfrak{F}. It is known [1] that A is in \mathfrak{F} if and only if A has closed range and finite-dimensional null and defect spaces.
2. The algebra $\mathbb{Q}(S)$. Our first object is to determine the ideals of $a(S)$. For vectors y and z in H, we define the operator $T_{y, z}$ by
$$
T_{y, z}(x)=(x, y) z
$$

It is well known that the smallest closed subspace of $B(H)$ containing all $T_{y, z}$ is just \mathfrak{K}.

Theorem 1. The algebra $\mathfrak{a}(S)$ contains the full ideal of compact operators \mathfrak{K} and $\Re \subset \mathscr{G}$ for every nontrivial ideal \mathfrak{g} in $\mathfrak{Q}(S)$.

Proof. Since $1-S S^{*}=P_{0}$ is in \Re, we see that $Q \cap \Re$ is a nontrivial ideal in \mathbb{Q}. Now suppose that \mathfrak{g} is any nontrivial ideal in \mathfrak{Q}. If $A \neq 0$ is in \mathfrak{g} then $A^{*} A$ is also in \mathfrak{g}. For some $N \geqq 0$ we have $\left\|A e_{N}\right\| \neq 0$. Since $S^{m} P_{0} S^{m^{*}}=P_{m}$, we see that P_{m} is in a for all $m \geqq 0$. Hence $P_{N} A^{*} A P_{N}$ is in 9 . But

$$
\begin{aligned}
P_{N} A^{*} A P_{N} x & =\left(A^{*} A P_{N} x, e_{N}\right) e_{N} \\
& =\left(x, P_{N} A^{*} A e_{N}\right) e_{N}=\left\|A e_{N}\right\|^{2} P_{N} x
\end{aligned}
$$

so P_{N} is in \mathscr{g} and thus $S^{* N} P_{N} S^{N}=P_{0}$ is in \mathscr{g}.
Now given any $\epsilon>0$ and y in H there is a polynomial $p(x)$ so that $\left\|p(S) e_{0}-y\right\|<\epsilon$. It follows that the operator $T_{y, e_{0}}$ has the property that $\left\|P_{0}[p(S)]^{*}-T_{y, e_{0}}\right\|<\epsilon$. Thus, $T_{y, e_{0}}$ is in g. Similarly, if z is in H then there is a polynomial $q(x)$ with $\left\|q(S) e_{0}-z\right\|<\epsilon$ and $\| q(S) T_{y, e_{0}}$ $-T_{y, z}\|<\epsilon\| y \|$ so that for all $y, z, T_{y, z}$ is in \mathscr{G}. It follows that \mathscr{g} contains all finite rank operators and hence $\mathfrak{K} \subset \mathscr{G}$.

As immediate consequences of Theorem 1 we have two well-known results.

Corollary 1.1. The algebra $\mathfrak{Q}(S)$ is dense in $ß(H)$ with the strong topology.

Proof. K is strongly dense in $B(H)$. \square
Corollary 1.2. The shift S has no reducing subspaces except the trivial ones (0) and H.

Proof. Otherwise, by Corollary 1.1 there would be a proper subspace invariant under all the operators in $B(H)$. \square

We can now complete the ideal theory for $Q(S)$.
Theorem 2. The algebra $\mathbb{Q}(S) / \mathcal{K}$ is $*$-isomorphic and isometric to $C(T)$.

Proof. Since $S^{*} S-S S^{*}=P_{0}$ is in \mathscr{K}, it is apparent that \mathbb{Q} / \mathscr{K} is an abelian C^{*}-algebra. Hence \mathbb{Q} / \mathcal{K} is $*$-isomorphic and isometric to $C(X)$ where X is the maximal ideal space of \mathbb{Q} / \mathscr{K}. Now \mathbb{Q} / \mathscr{K} is generated by $\pi(S)$ and $\pi\left(S^{*}\right)$ so X is homeomorphic to the spectrum of $\pi(S)$ in $\mathfrak{Q} / \mathcal{K}$. By a theorem in [2], the spectrum of $\pi(S)$ in \mathbb{Q} / \mathscr{K} is the set $\{\lambda: S-\lambda$ is not in $\mathfrak{F}\}$ and an elementary computation shows that this set is just the perimeter of the unit circle T. \square

Theorems 1 and 2 determine the structure of the ideals of $\mathbb{Q}(S)$ since the ideal theory for $C(T)$ is well known.
3. The algebra $a(W \oplus S)$. The next part of the program is to determine the structure of $\mathbb{Q}(W \oplus S)$ where W is a unitary operator on H_{1} and S is the shift on H_{2} with $H_{1} \oplus H_{2}=H$. We require a Lemma which may be of some intrinsic interest.

Lemma. If $A \oplus B$ is in $\mathfrak{a}(W \oplus S)$ then $\|A\| \leqq\left\|\pi_{2}(B)\right\| \leqq\|B\|$.
Proof. There is a sequence of "polynomials" in two noncommuting "indeterminates,"

$$
p_{n}(x, y)=\sum a_{i_{1} i_{2} i_{3} \ldots i_{k}}^{(n)} x^{i_{1}} y^{i_{2}} x^{i_{3}} \cdots y^{i_{k}}
$$

such that $p_{n}\left(W, W^{*}\right) \rightarrow A$ and $p_{n}\left(S, S^{*}\right) \rightarrow B$ in the operator norm topology. Thus

$$
p_{n}\left(\pi_{2}(S), \pi_{2}\left(S^{*}\right)\right) \rightarrow \pi_{2}(B)
$$

since π_{2} is norm-decreasing. Now applying the Gelfand transform to the abelian C^{*}-algebra generated by $\pi_{2}(S)$, we see that $\sup _{\lambda \in T}\left|p_{n}(\lambda, \bar{\lambda})\right| \rightarrow\left\|\pi_{2}(B)\right\|$ since the spectrum of $\pi_{2}(S)$ in $\mathbb{Q}(S) / \mathscr{K}_{2}$ is T and the Gelfand transform is an isometry. On the other hand, applying the Gelfand transform to the C^{*}-algebra generated by W, we see that $\sup _{\lambda \in \sigma(W)}\left|p_{n}(\lambda, \bar{\lambda})\right| \rightarrow\|A\|$. Since $\sigma(W) \subset T$, the desired result follows.

Theorem 3. The algebra $\mathfrak{Q}(W \oplus S)$ is isometrically *-isomorphic to $Q(S)$ under the mapping $W \oplus S \leftrightarrow S$.

Proof. The mapping $W \oplus S \rightarrow S$ extends to the "polynomials" described in the Lemma. The extension is clearly a *-homorphism. If $p(x, y)$ is such a "polynomial" then

$$
\left\|_{p\left(W, W^{*}\right)} \oplus p\left(S, S^{*}\right)\right\|=\max \left(\left\|p\left(W, W^{*}\right)\right\|,\left\|p\left(S, S^{*}\right)\right\|\right)
$$

But by the Lemma, $\left\|p\left(W, W^{*}\right)\right\| \leqq\left\|p\left(S, S^{*}\right)\right\|$ so

$$
\left\|p\left(W, W^{*}\right) \oplus p\left(S, S^{*}\right)\right\|=\left\|p\left(S, S^{*}\right)\right\| .
$$

Hence, the mapping extends to an isometry from $\mathfrak{Q}(W \oplus S)$ onto $\mathbb{Q}(S)$ which is also a ${ }^{*}$-isomorphism. \square

Corollary 3.1. The algebra $Q(W \oplus S)$ has a unique minimal nontrivial ideal, $\mathfrak{G}(W \oplus S)$, and $\mathfrak{Q}(W \oplus S) / \mathfrak{g}(W \oplus S) \cong C(T)$.

Proof. This follows from the properties of $\mathbb{Q}(S)$ established in Theorems 1 and $2 . \square$
It is of some interest to determine the minimal ideal $\mathfrak{g}(W \oplus S)$ spatially. This can be done in a manner similar to Theorem 1.

Theorem 4. The minimal nontrivial ideal $\mathfrak{g}(W \oplus S)$ in $\mathbb{Q}(W \oplus S)$ is

$$
\mathfrak{g}(W \oplus S)=0 \oplus \mathfrak{K}_{2}=\mathfrak{K} \cap \mathfrak{Q}(W \oplus S) .
$$

Proof. Since

$$
\left(W^{*} \oplus S^{*}\right)(W \oplus S)-(W \oplus S)\left(W^{*} \oplus S^{*}\right)=0 \oplus P_{0}
$$

we see that $K \cap Q$ is a nontrivial ideal in \mathbb{Q}. Now suppose \mathbb{S} is any nontrivial ideal. By the Lemma, if $C \oplus D$ is a nonzero element of \mathfrak{g} then $D \neq 0$. Hence, for some e_{N} in the basis $\left\{e_{n}: n=0,1,2, \cdots\right\}$ for H_{2}, we have $\left\|D e_{N}\right\| \neq 0$. The argument that $0 \oplus K_{2} \subset \mathfrak{g}$ now finishes as in the proof of Theorem 1. Further, if $C \oplus D$ is in $\Re \cap \propto$ then C is in \Re_{1} and D is in \Re_{2}. It follows from the Lemma that $\|C\|=0$ so that $0 \oplus K_{2}=\mathscr{K} \cap \propto . \square$
4. The general case. For the case A an arbitrary isometry, the algebra $\mathbb{Q}(A)$ can now be determined. Using a decomposition due to Halmos [3], any isometry A on H is either (i) unitary, (ii) unitarily equivalent to a shift S_{α} of multiplicity α, or (iii) unitarily equivalent to a direct sum $W \oplus S_{\alpha}$ where W is unitary. In the first case, $\mathfrak{a}(A)$ is isometrically ${ }^{*}$-isomorphic to $C(\sigma(A))$. In case (ii), the mapping $S \leftrightarrow S_{\alpha}$ induces an isometric *-isomorphism between $\mathbb{Q}(A)$ and $\mathfrak{Q}(S)$ so the theory of $\S 2$ carries over to $\mathbb{Q}(A)$. In case (iii), the mapping

$$
W \oplus S \leftrightarrow W \oplus S_{\alpha}
$$

induces an isometric *-isomorphism between $\mathbb{Q}(A)$ and $\mathbb{Q}(W \oplus S)$ so the theory of $\S 3$ carries over to $\mathbb{Q}(A)$. In cases (ii) and (iii), $\mathbb{Q}(A)$ $\cong \mathbb{Q}(S)$ and there is a unique minimal ideal $\mathscr{G}(A) \neq 0$ with $\mathbb{Q}(A) / \mathscr{G}(A)$ $\cong C(T)$. Thus the algebraic structure is independent of W and α.

One can hope that knowing the ideals of $\mathfrak{Q}(A)$ makes possible a
classification of the *-representations of $Q(A)$. In fact, the representation theory for $Q(S)$ can be handled by use of Theorem 1 and standard results on representations of $\beta(H)$ and \Re. In particular, using results from [4, p. 296] we see that every representation of $Q(S)$ is a direct sum of identity representations and representations of $C(T)$. Using the fact that for A an isometry, either $\mathbb{Q}(A) \cong C(\sigma(A))$ or $\mathfrak{Q}(A) \cong \mathbb{Q}(S)$, the *-representations for $\mathbb{Q}(A)$ can now be determined.

References

1. F. V. Atkinson, The normal solubility of linear equations in normed spaces, Mat. Sb. N.S., (70) 28 (1951), 3-14.
2. L. A. Coburn and A. Lebow, Algebraic theory of Fredholm operators, J. Math. Mech. 15 (1966), 577-584.
3. P. R. Halmos, Shifts on Hilbert space, J. Reine Angew. Math. 208 (1961), 102112.
4. M. A. Naimark, Normed rings, Noordhoff, Groningen, 1959.

Belfer Graduate School of Science, Yeshiva University

[^0]: ${ }^{1}$ Research supported by NSF Grant GP 5866.

