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1. Introduction. A topological group G is said to be maximally 
almost periodic if the continuous almost periodic functions separate 
points in G, or equivalently if the continuous finite-dimensional uni
tary representations of G separate points in G. See [4], or [2, §18]. 
Throughout this note, we use "representation" to mean "continuous 
finite-dimensional unitary representation". Our purpose here is to 
announce some results concerning maximally almost periodic (MAP) 
groups which are independent of the classical theorem of Freudenthai-
Weil which states that a locally compact connected group is MAP 
if and only if it is the direct product of Rn and a compact group 
[6, §§30, 31]. 

The results in this note comprise a portion of the author's doctoral 
dissertation. Detailed proofs of these and other results will appear at a 
later date. The author thanks his thesis advisor, Professor Edwin 
Hewitt, and Professor Lewis Robertson for all their assistance and 
encouragement. l 

2. Definitions and notation. Let K be a (Hausdorff but not neces
sarily locally compact) topological group, G a normal subgroup of K 
and T= {t(x):xÇzK} be the group of topological automorphisms of 
G which are restrictions to G of inner automorphisms of K. Let K 
(and G resp.) be the space of equivalence classes of irreducible repre
sentations of K (and G resp.). In an investigation of K it is natural to 
consider the action on G induced by T. For example, see [ l ] . Let U be 
a representation, UÇzvÇzG, define t*(x) U— U o t(x)~l and define 
t*(x)<r to be the equivalence class of t*(x)U. If the set {t*(x)a: 
t(x)(ET} is finite, then <r is said to be finitely orbited by T. LetF(G,T) 
be the set {&£:&'. v is finitely orbited by T}. The von Neumann kernel 
of a group is the intersection of all kernels of representations of that 
group. 

3. Results. 

THEOREM 1. Let K, G and T be as above. If UÇzaÇzK and if y (EG are 
such that Uy^Iy then there exists an element of F(G, T) which separates 

1 This research was supported by a NASA Predoctoral Traineeship at the Univer
sity of Washington. 
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y from the identity. In particular, if K is MAP, then F(G, T) separates 
points in G. 

This is proved by utilizing the uniqueness of the decomposition 
into a direct sum of irreducible constituents of the restriction of U to 
G; the equivalence classes of these constituents are permuted by the 
action of T. 

THEOREM 2. Let K, G and T be as above. Let o~ÇzF(G, T) and let 
0(a, T) be the orbit of cr by T. Then the mapping 2 which sends x onto 
the restriction of t*(x) to O (a, T) is well defined and is a continuous 
homomorphism of K onto a finite group. The kernel of 2 contains G. 

In general the condition that F(G, T) separate points in G is not 
enough to imply that K is MAP even if K/G is assumed to be MAP. 
However, if K is the semidirect product of G and a topological group 
H, K = G ©pH, then we have 

THEOREM 3. Let K = G©pH. Let H0 (and (G©pH)0 resp.) be the 
von Neumann kernel of H (and G©$H resp.). Let S = n{ker U: 
U<Ecr<EF(G, P(H))}. Then (G ®pH)0 = 5 ®H0. In particular, G ®pH is 
MAP if and only if H is MAP and F(G, /3(H)) separates points in G. 

The connection between 13(H) here and the T above follows from 
the equation t(e, h)(x, e) = (@(h)(x), e). See [2, p. 7]. The major diffi
culty in the proof of this theorem is to show that if g G G and if 
UÇ:<r(E:F(G, (5(H)) are such that UQT^I, then there exists a represen
tation V of K which separates (g, e) from the identity. A rough sketch 
follows. Let S be the homomorphism corresponding to a defined in 
Theorem 2. Then kerS = G ©M and (G ©H)/(G ©M) is a finite group. 
Let U(^) be the unitary group of U and use Burnside's theorem 
[3, p. 276] to know that the set {Ux: xÇEG} spans the w2-dimensional 
Hubert space of all linear operators on Cn (C is the field of complex 
numbers). A closed subgroup 21 of U(n2), a semidirect product 
U(n) ©21 and a continuous homomorphism <j> of G © M into U(n) ©2Ï 
are constructed. Then <j>(g, e) can be separated from the identity by a 
representation W of the compact group U(n) ©21 and the desired 
representation V of K is induced from the representation W o 0 of 
kerS. 

If G is an Abelian group, then we can identify the character group 
X of G with G and with the notation as in 2 above, F(X, T) is a sub
group of X. 

THEOREM 4. Let V be a normal subgroup of a topological group K. 
Assume further that V is topologically isomorphic to the additive group 
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of a finite-dimensional vector space over some locally compact, nondis-
crete field of characteristic zero. Let C be the centralizer of V in K. Then K 
is MAP if and only if C is MAP and K/C is a finite group. 

We make use of Pontrjagin's classification of locally compact fields 
[5, Satz 22] and the fact that the field of real numbers and the £-adic 
number fields are self-dual to show that the finitely orbited characters 
of V form a subspace of V, so that F( V, T) is closed in V. Further
more, it follows from Theorem 1 that F(V, T) is dense in V. These 
facts imply that T must be finite so that C must have finite index in K. 

Using a ^-series field, a group can be constructed to show that the 
hypothesis above (that the field have characteristic zero) is essential. 
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