EXTENSION OF VALUATION THEORY

BY MERLE E. MANIS

Communicated by David A. Buchsbaum, May 16, 1967
By a valuation on a commutative ring R with 1 we mean a pair (v, Γ) where Γ is an ordered (multiplicative) group with zero adjoined and v is a map from R onto Γ satisfying
(1) $v(x y)=v(x) v(y)$ for all $x, y \in R$,
(2) $v(x+y) \leqq \max \{v(x), v(y)\}$ for all $x, y \in R$.

This generalizes the field concept; the insistence on "onto" is what allows us to generalize the main field theorems.

Proposition 1. Let A be a subring of a ring R, P a prime ideal of A. Then the following are equivalent:
(1) For each subring B of R and prime ideal Q of B with $A \subset B$, $Q \cap A=P$, one has $A=B$.
(2) For $x \in R \backslash A$ there exists a $y \in P$ with $x y \in A \backslash P$.
(3) There is a valuation (v, Γ) on R with

$$
A=\{x \in R \mid v(x) \leqq 1\}, \quad P=\{x \in R \mid v(x)<1\}
$$

We call pairs (A, P) satisfying the three equivalent conditions valuation pairs.

Proposition 2. The valuations (v, Γ) and (w, Λ) determine the same valuation pair (A, P) if and only if there is an order isomorphism ϕ of Γ onto Λ such that $w=\phi \circ v$.

Let the valuation (v, Γ) determine the valuation pair (A, P). Then an ideal \mathfrak{A} of A is called v-closed if $x \in \mathfrak{M}, y \in R$ and $v(y) \leqq v(x)$ implies $y \in \mathfrak{A}$.

Proposition 3. The v-closed ideals of A are linearly ordered by inclusion. The v-closed prime ideals are in 1-1 correspondence with the isolated subgroups of Γ. If $\phi: \Gamma \rightarrow \Gamma / \Sigma$ is the natural map with Σ an isolated subgroup of Γ, then the v-closed prime ideal corresponding to Σ is the ideal of the valuation pair determined by the valuation ($\phi \circ v, \Gamma / \Sigma$).

Independence and dominance of valuations are defined as in [5] and the "same" computational lemmas are obtained.

Let R be a ring extension of a ring K, $\left(v_{0}, \Gamma_{0}\right)$ a valuation on K. By an extension of (v_{0}, Γ_{0}) to R we mean a valuation (v, Γ) on R and an order isomorphism ϕ of Γ_{0} into Γ such that $v(x)=\phi \circ v_{0}(x)$ for all $x \in K$.

Proposition 4. A valuation (v_{0}, Γ_{0}) on K has extensions to R if and only if $R \mathfrak{H} \cap K \subset \mathfrak{H}$ where $\mathfrak{H}=\left\{x \in K \mid v_{0}(x)=0\right\}$.

For the remainder of this announcement we assume that R is an integral extension of K and (v_{0}, Γ_{0}) is a valuation on K. If (v, Γ) is an extension of (v_{0}, Γ_{0}) we identify and get $\Gamma_{0} \subset \Gamma$.

Proposition 5. The following hold:
(1) (v_{0}, Γ_{0}) has extensions to R,
(2) Γ / Γ_{0} is torsion for any extension ($\left.v, \Gamma\right)$ of $\left(v_{0}, \Gamma_{0}\right)$,
(3) Given $x \in R$ there is an $x^{\prime} \in R$ such that $v\left(x x^{\prime}\right)=1$ for all extensions (v, Γ) of $\left(v_{0}, \Gamma_{0}\right)$ with $v(x) \neq 0$.

Proposition 6. Let (v_{i}, Γ_{i}) be pairwise independent extensions of $\left(v_{0}, \Gamma_{0}\right)$ and α_{i} nonzero elements of $\Gamma_{i}, i=1,2, \cdots, n$. Then there is an $x \in R$ such that $v_{i}(c)=\alpha_{i}$ for each i.

For (v, Γ) an extension of (v_{0}, Γ_{0}), define e_{v} to be the index of Γ_{0} in Γ and f_{v} be the rank of A / P over A_{0} / P_{0}, where (A, P) is the valuation pair determined by (v, Γ) and $\left(A_{0}, P_{0}\right)$ the valuation pair determined by $\left(v_{0}, \Gamma_{0}\right)$. Let n be the rank of $R / R \mathfrak{H}$ over K / \mathfrak{Y}, where $\mathfrak{N}=\left\{x \in K \mid v_{0}(x)=0\right\}$.

Proposition 7. Let (v_{i}, Γ_{i}) $i=1,2, \cdots, r$, be extensions of $\left(v_{0}, \Gamma_{0}\right)$ which determine distinct valuation pairs. Then $\sum_{i=1}^{r} e_{v_{i}} f_{v_{i}} \leqq n$.

Results and definitions when R is a Galois extension of K are almost identical to those for fields as in [5], including the classical.

Proposition 8. efg $\pi^{d}=n$, where $e=e_{v}, f=f_{v}$ for any extension (v, Γ) of $\left(v_{0}, \Gamma_{0}\right) ; g$ is the number of extensions of $\left(v_{0}, \Gamma_{0}\right) ; \pi$ is the characteristic of the residue ring A_{0} / P_{0} if this is prime, 1 otherwise; d is a nonnegative integer; and n is the number of elements in a Galois group for R over K.

Bibliography

1. N. Bourbaki, Algebra commutative, Chapter 5, 6, Hermann, Paris, 1964.
2. S. Chase, D. K. Harrison and A. Rosenberg, Galois theory and cohomology of commutative rings, Mem. Amer. Math. Soc., No. 52, 1965.
3. D. K. Harrison, Finite and infinite primes in rings and fields, Mem. Amer. Math. Soc., No. 68, 1967.
4. M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
5. O. Zariski and P. Samuel, Commutative algebra, Vol. II, Van Nostrand, New York, 1960.

University of Oregon and University of Montana

