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In the previous paper [6] with the same title, the writer proved
that a (nonlinear) monotonic operator G from a Banach space X to
the adjoint space X* is demicontinuous if and only if it is hemicon-
tinuous and locally bounded, under a certain mild assumption on
D(G). (For similar results see also Browder [3].) In the present note
we shall show that if D(G) is an open set, the assumption of local
boundedness is redundant so that hemicontinuity and demicontinu-
ity are equivalent. Furthermore, we shall show that a similar result
holds for a more general class of operators, including accretive opera-
tors in X where X* is uniformly convex.

In what follows we consider (real or complex) Banach spaces X, ¥
and (nonlinear) operators F, G such that (D and R denoting the
domain and range, respectively) D(F)=X, R(F)CY, D(G)CX,
R(G)CY*

DEFINITION 1. G is said to be F-monotonic if

where ( , ) denotes the pairing between ¥ and Y*.

DEeFINITION 2. Let # € D(G). G is said to be

(a) demicontinuous at % if 4, &ED(G), n=1, 2, - - -, and u,—u
as n— » imply Gu,—Gu (here and in what follows — and — denote
strong and weak* convergence, respectively);

(b) locally bounded at # if the conditions in (a) imply that ”Gu,,”
is bounded as n—  ;

(c) hemicontinuous at « if v€X, £,>0, n=1, 2, - - -, t,—0 and
u+t,0ED(G) imply G(u-+t.0)—Gu;

(d) locally hemibounded at # if the conditions in (c) imply that
||G(w+tw0)|| is bounded as n—> .

Obviously we have the implications
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ExaMPLE 1. Let ¥=X and F=1 (the identity operator in X). Then
the F-monotonicity of G means that G is monotonic in the usual
sense of Minty [8] and Browder [2].

ExaMPLE 2. Assume that X is reflexive and set Y=X*. Further
assume that X* is strictly convex. Let F: X—X* be the duality map,
which is well defined if we assume that || Fx|| =||«|| (see Beurling and
Livingston [1], Browder [4]). In this case the F-monotonicity of G
(which has range space Y*=X) means that G is accretive in the
sense of Browder [5]. We note that here F is itself a monotonic
operator in the sense of Example 1. Since F is also known to be demi-
continuous and coercive (see Browder [5]), it follows from a theorem
of [8] and [2] that F is onto X*. We note also that F is uniformly
continuous (in the strong topologies) in any bounded subset of X if X*
is uniformly convex (see e.g. Kato [7]).

THEOREM. 4 ssume that

(1°) F is positive-homogeneous: F(tx) =1F(x) for t>0;

(2°) Fisonto Y: R(F)=7Y;

(3°) F is uniformly continuous in the closed unit ball of X (in the
strong topologies);

(4°) D(G) is open in X;

(5°) G is F-monotonic.
Then

(i) G s locally bounded at w S D(G) if and only if it is locally hemsi-
bounded at u;

(ii) G is demicontinuous at w S D(G) if and only if it is hemicontinu-
ous at u.

In view of Examples 1, 2 given above, the following corollary is a
direct consequence of the theorem.

COROLLARY. Demicontinuity and hemicontinuity are equivalent for G
in each of the following cases.

(@) G is a monotonic operator with D(G) open in X and R(G) CX*,
X being an arbitrary Banach space.

(b) G isan accretive operator in X with D(G) open, X* being assumed
to be uniformly convex.

Proor or THE THEOREM. (i) Since local boundedness at # implies
local hemiboundedness at #, it suffices to prove the converse implica-
tion. To this end, it suffices to show that u,—u and ||Gu,|| =7,— =
lead to a contradiction if G is locally hemibounded at # &€ D(G).

For each s3>0 let ¢(s) be the supremum of || Fx— Fy|| for ||«]| <1,
llyll s1, and ||x—y|| <s. Since by (3°) F is uniformly continuous in
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the unit ball of X, ¢(s) is nondecreasing in s and ¢(s)—0 as s—0.

Furthermore, ¢(s) < « for all s>0 in virtue of positive-homogeneity
(1°). Thus

(1) [Fe — Pl s olx—5l) it [lall s 1, bl = 1.
Set

2) tn = Max[(1/r,), “u,. - u””“’, ¢(”u,. - u”)l/’],

so that

(3) >0, Lraz 1, |lun—ul <ts, 6(um—1) = o

Since 7,—w and ||#, —u||—0 by hypothesis, ¢ (||#.—u||)—0 too and
4) th—0 as n— o,

Let v&€X and w,=u-+t,w. Since u&D(G) and D(G) is open,
w, ED(G) for sufficiently large #. Thus we have by (1°) and (5°)

Re(Fv, Gun) = 17 Re(F(wn — %a),Gwn)

®) + 7! Re(F(tav) — F(wn — %), Gtn).

Let us estimate the right member of (5). First we note that
17 (W —hn) =0 — b7 (U —u)—vas n— o for ;Y| u, —u| 710 by (3)
and (4). Since F is continuous by (1°) and (3°), we have ;' F(w, —u,)
= F(t:'(wa—u.))—Fo. Since ||Gw.|=||Gu+t.2)|| is bounded as
n— o by the assumed local hemiboundedness at # of G, the first
term on the right of (5) is thus bounded as #— .

To estimate the second term, we note that both ¢,v and w,—u,
tend to zero and hence belong to the unit ball of X for sufficiently
large n. Hence || F(tw) — F(wa—tn)|| < ¢(||tar —wa+u|) = ¢ (| o —2|)
<t by (1) and (3), so that the second term on the right of (5) is
majorized by t.||Gua|| =tas.

Thus we have the estimate

(6) Re (Fv, Gu,) = C + tuta,

where C may depend on v but not on #. Dividing (6) by .7, and noting
that t,7, =1 by (3), we obtain

@) lim sup Re(Fv, (tarn)"'Gu,) < .

n— co
Since F is onto Y by (2°), y=Fv in (7) can be any element of Y.
Replacing ¥ by —y (and by 4y if ¥V is complex), we see that
(¥, (tarn)"'Gu,) is bounded as n— o for every y& V. But this is a
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contradiction to the principle of uniform boundedness, for
|| (tarn)—1Gn|| =t 1> .

(ii) Again it suffices to show that G is demicontinuous at # €D(G)
if it is hemicontinuous at #. Let #,—u; we have to show that Gu,—Gu.
Since hemicontinuity at # implies local hemiboundedness at #, G is
locally bounded at % by (i) just proved. Thus 7, =||Gu,|| is bounded
as n—®,

Now we set

tn = Max[[|un — uf| 112, ¢(||un — ul[)12],

so that (3) and (4) are again true except t,7,=1. With w,=u-+1t.0,
we have again the inequality (5). Since ¢;"!F(w,—#%,)— Fv as before
and since Gw, =G (u+t,9)—Gu by the hemicontinuity of G at %, the
first term on the right of (5) tends to Re(Fv, Gu). The second term is
majorized by ¢,7, as before. Since 7, is now bounded, this term tends
to zero. Thus we have
lim sup Re(Fv, Gu, — Gu) < 0.
n— 0

Since Fv=7y may be an arbitrary element of Y, it follows by an argu-
ment similar to the one used in (i) that lim supl (y, Gu,,—Gu)I =0
for every y& Y. Thus Gu,—Gu.
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