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In the previous paper [6] with the same title, the writer proved 
that a (nonlinear) monotonie operator G from a Banach space X to 
the adjoint space X* is demicontinuous if and only if it is hemicon-
tinuous and locally bounded, under a certain mild assumption on 
D(G). (For similar results see also Browder [3].) In the present note 
we shall show that if D(G) is an open set, the assumption of local 
boundedness is redundant so that hemicontinuity and demicontinu-
ity are equivalent. Furthermore, we shall show that a similar result 
holds for a more general class of operators, including accretive opera
tors in X where X* is uniformly convex. 

In what follows we consider (real or complex) Banach spaces X, Y 
and (nonlinear) operators F, G such that (D and R denoting the 
domain and range, respectively) D(F)=X, R(F)CY, D(G)CX, 
R(G)QY*. 

DEFINITION 1. G is said to be F-monotonic if 

Re(F(x -y),Gx- Gy) è 0, x, y E D(G), 

where ( , ) denotes the pairing between Y and F*. 
DEFINITION 2. Let uED(G). G is said to be 
(a) demicontinuous a t u if un(E;D(G), n==l, 2, • • • , and un—^u 

as »—» oo imply Gun—*Gu (here and in what follows —» and —* denote 
strong and weak* convergence, respectively) ; 

(b) locally bounded a t u if the conditions in (a) imply that ||Gw»|| 
is bounded as n-+ oo ; 

(c) hemicontinuous a t u if v&X, tn>0, w = l, 2, • • • , tn—»0 and 
u+tnvÇzD(G) imply G(u+tnv)—*Gu; 

(d) locally hemibounded a t u if the conditions in (c) imply that 
||Cr(#+$n*0|| is bounded as n—>oo. 

Obviously we have the implications 

(a) < ^ 2 <«• 

1 This work was partly supported by Air Force OSR Grant 553-64. 
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EXAMPLE 1. Let F = X a n d F*= 1 (the identity operator in X). Then 
the jF-monotonicity of G means that G is monotonie in the usual 
sense of Minty [8] and Browder [2]. 

EXAMPLE 2. Assume that X is reflexive and set Y=X*. Further 
assume that X* is strictly convex. Let F: X-+X* be the duality map, 
which is well defined if we assume that \\Fx\\ = \\X\\ (see Beurling and 
Livingston [ l ] , Browder [4]). In this case the i^monotonicity of G 
(which has range space Y* = X) means that G is accretive in the 
sense of Browder [S], We note that here F is itself a monotonie 
operator in the sense of Example 1. Since F is also known to be demi-
continuous and coercive (see Browder [5]), it follows from a theorem 
of [8] and [2] that F is onto X*. We note also that F is uniformly 
continuous (in the strong topologies) in any bounded subset of X if X* 
is uniformly convex (see e.g. Kato [7]). 

THEOREM. Assume that 
(1°) F is positive-homogeneous : F(tx) = tF(x) for t > 0 ; 
(2°) F is onto Y:R(F)=Y; 
(3°) F is uniformly continuous in the closed unit ball of X (in the 

strong topologies) ; 
(4°) D(G) is open in X; 
(5°) G is F-monotonic. 

Then 
(i) G is locally bounded at # £ D ( G ) if and only if it is locally hemi-

bounded at u; 
(ii) G is demicontinuous at uÇzD(G) if and only if it is hemicontinu-

ous at u. 

In view of Examples 1, 2 given above, the following corollary is a 
direct consequence of the theorem. 

COROLLARY. Demicontinuity and hemicontinuity are equivalent for G 
in each of the following cases. 

(a) G is a monotonie operator with D(G) open in X and R(G)QX*, 
X being an arbitrary Banach space. 

(b) G is an accretive operator in X with D(G) open, X* being assumed 
to be uniformly convex. 

PROOF OF THE THEOREM, (i) Since local boundedness a t u implies 
local hemiboundedness a t u, it suffices to prove the converse implica
tion. To this end, it suffices to show that un-*u and ||Gwn|| =rn—>oo 
lead to a contradiction if G is locally hemibounded a t u£:D(G). 

For each s > 0 let <f>(s) be the supremum of \\Fx — Fy\\ for \\x\\ g l , 
\\y\\ ^ l i and | |#--y|| ^s. Since by (3°) F is uniformly continuous in 
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the unit ball of X, <j>{s) is nondecreasing in s and <j>(s)-+0 as s—>0. 
Furthermore, #(s) < <*> for all s>0 in virtue of positive-homogeneity 
(1°). Thus 

(1) \\Fx - Fy\\ g <t>(\\x - , | | ) if \\x\\ £ 1, | | , | | Û 1. 

Set 

(2) tn = Max[(l/rw), \\un - up\ 4>(\\un - u\\)w], 

so that 

(3) 4 > 0, tnrn è 1, \\un — u\\ é tn, <K\\un ~ u\\) g *». 

Since rn—>oo and ||wn — w||-->0 by hypothesis, #(| |#n —#||)—>0 too and 

(4) tn —» 0 as n —* oo. 

Let fl(EX and wn = w + ^ . Since uÇ:D(G) and £>(G) is open, 
WnÇiD(G) for sufficiently large w. Thus we have by (1°) and (5°) 

Re(Ffl, Gun) â tn1 Re(F(wn - un)fiwn) 

+ tn1 Re(F(tnv) - F(wn - O , Gta»). 

Let us estimate the right member of (5). First we note that 
tnl(wn — Un) ^V — t^iUn—u)—»£JaSW—» <*> for tn"1]] Un — w|| ^J*1"">0 b y (3) 

and (4). Since F is continuous by (1°) and (3°), we have tnlF(wn—un) 
==F(tn-

1(wn — Un))—*Fv. Since ||Gw»|| = | | G ! ( W + ^ ) | | is bounded as 
n—»oo by the assumed local hemiboundedness a t u of G, the first 
term on the right of (5) is thus bounded as n—> <*>. 

To estimate the second term, we note that both tnv and wn — un 

tend to zero and hence belong to the unit ball of X for sufficiently 
large n. Hence \\F(tnv) — F(wn—un)\\ S<t>(\\tnV—wn+un\\) = <£(||wn—^||) 
Stl by (1) and (3), so that the second term on the right of (5) is 
majorized by /„||G#»|| = ^ V 

Thus we have the estimate 

(6) Re (Fv, Gun) èC + tnrn, 

where C may depend on v but not on n. Dividing (6) by tnrn and noting 
that tnrn^l by (3), we obtain 

(7) lim sup Re(Fv, (tnrn)~-lGun) < <*>. 
n—*oo 

Since F is onto Y by (2°), y = Fv in (7) can be any element of F. 
Replacing y by —y (and by ±iy if Y is complex), we see that 
(y, (tnrn)-

lGun) is bounded as n—><*> for every yÇzY. But this is a 
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contradiction to the principle of uniform boundedness, for 
\\(tnrn)-iGun\\=tnl^«>. 

(ii) Again it suffices to show that G is demicontinuous a t uÇzD(G) 
if it is hemicontinuous a t u. Let un—>u ; we have to show that Gun—*Gu. 
Since hemicontinuity a t u implies local hemiboundedness a t u, G is 
locally bounded a t u by (i) just proved. Thus rn = ||Gwn|| is bounded 
as w—»oo. 

Now we set 

tn = Max[||^w - «||w», 0(11^ - «11)1/1], 

so that (3) and (4) are again true except tnrn^l. With Wn^u+tnV, 
we have again the inequality (5). Since t^~1F(wn'-un)-^Fv as before 
and since Gwn — G(u+tnv)—*Gu by the hemicontinuity of G a t u, the 
first term on the right of (5) tends to Re(Fv, Gu). The second term is 
majorized by tnrn as before. Since rn is now bounded, this term tends 
to zero. Thus we have 

lim sup Re(Fz), Gun — Gu) ^ 0. 
n—•*> 

Since Fv = y may be an arbitrary element of F, it follows by an argu
ment similar to the one used in (i) that lim sup| (y, Gu„—Gu)\ = 0 
for every yÇzY. Thus Gun—*Gu. 
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