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1. Introduction. I t is well known that the parabolic equation 

(1) a>ij(x, t)uXiXj + di(x, t)uXi + a(x} t)u — ut = 0 

possesses a fundamental solution provided that the coefficients are 
Holder continuous. Here x— (xi, • • • , xn) denotes a point in En with 
n È= 1, t denotes a point on the real line, and we employ the convention 
of summation over repeated indices. The fundamental solution 
g(x, t; £, r) can be constructed by the classical parametrix method, 
and it satisfies the inequality O^g^Ky, where y is the fundamental 
solution of aAu = Ut for some constant a>0 and K>0 is a constant 
which depends upon the Holder norms of the coefficients ([4], [5]). 
Several authors have investigated the problem of bounding g 
from below. Il'in, Kalashnikov, and Oleinik [5] proved that 
gg^const (t—r)~nl2 in the paraboloid |#—£| 2 ^const ( /—r) ; while 
Besala [3] and Friedman [4] have derived lower bounds for g which 
are valid when t—r is bounded away from zero. In the appendix to his 
important paper [6] on Holder continuity of solutions of parabolic 
and elliptic equations, Nash asserts the existence of global upper and 
lower bounds for the fundamental solution of the divergence struc
ture parabolic equation 

(2) ut — {üij{x} t)uXi}Xj = 0. 

These bounds do not involve the fundamental solutions of equations 
of the form aAu = ut and thus are not as sharp as the classical upper 
bound for (1). On the other hand, Nash's estimates are independent 
of the moduli of continuity of the coefficients of (2). 

For (x, t) in the strip 5 = £ n X ( 0 , T), consider the parabolic equa
tion 

(3) ut — {aij(x, t)uXi + aj(x, t)u}Xj — bj{x} t)uXj — c(x, t)u ~ 0. 

Assume that the coefficients of (3) are bounded measurable functions 
of (x, t) in S and that there exists a constant v > 0 such that a^(x, t)UÇj 
^v~l\ f | 2 almost everywhere in S for all f G £ n . Let g(x,t; £, r) denote 
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the fundamental solution of (3). If the coefficients of (3) are smooth, 
then g exists in the classical sense, otherwise it must be interpreted in 
the weak sense (cf. [ l]) . The purpose of this note is to announce the 
following global bounds for g. 

THEOREM 1. There exist positive constants au cc2, and K such that 

K-i7l(x - | , / ~- r) g g(x, t; £, r) ^ Ky2(x - & / - r) 

for all (x, /), (£, r ) £ 5 with t>r, where yi(x, t) is the fundamental solu
tion of aAu — Utfor i=l, 2. The constants depend only on v, n, T and 
the bounds f or the coefficients of (3). 

An analogous result also holds for the Greene function of (3) in a 
cylindrical domain OX(0, T) provided that x and £ are a t a positive 
distance S from dQ. In this case the constants will also depend upon S. 
Moreover, it is not necessary that the coefficients a^ bj and c be 
bounded. I t suffices that they belong to certain Lebesgue classes and 
satisfy an algebraic condition. The proofs of Theorem 1 and its exten
sions will be published in detail elsewhere. Here we shall prove The
orem 1 for the special case of equation (2). In this special case we 
encounter the main ideas of the general proof without too much tech
nical detail. In both the general case and the special case we make 
essential use of several results proved in reference [2]. 

To avoid the complication of having to consider the weak funda
mental solution of (2), we make the qualitative assumption that the 
coefficients of (2) are smooth, say, ^ y G C 0 0 ^ ) . Moreover, to simplify 
the computations we assume a^ = a3-i in S. The quantitative assump
tions can thus be put in the following form. There exists a constant 
v*zl such that 

(4) v~l I f |2 S aq(x9 t)Ui ^ » | f |2 for all (*, t) G S and f G JE». 

Under these conditions the fundamental solution g(x, t; £, r) exists, 
and it is known that 

(5) f g(x, *; {, r)d$ = f g(x, /; *, r)dx = 1. 

In addition, Nash [ó] has shown that 

(6) f gK*,t\i,T)dt£k(t-T)-«l\ f g\x,t^T)dx^k(t-T)-«l* 
J En J En 

and 
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(7) g(x,f,l:,T)£Kl-T)-»i*, 

where k denotes a positive constant which depends only upon n 
and v. 

2. The lower bound. According to Theorem 7' of [2], if 

(8) TO = inf I g(x, t; f, r)dx > 0 
o < « r J \x-è\2<a(t-T) 

for some cx>0, then there exist constants C\ and Ci such that 

«(*, f, *, r) è d ( / - T ) - / « exp{ - C , | * - «|V(< " r)} 

for (x, /)> (£> T ) G » 5 with / > r . Here & depends only on a, ÎÏÏI, n, and *>, 
while Ci depends only on n and v. Hence, in order to prove the validity 
of the lower bound in Theorem 1 it suffices to show that (8) holds. 

Let (£, r ) £ S and tÇz(r, T) be fixed. Consider the function 

v(y>s) =* I 2 g(*,t',y,s)dx 
J i*-£| <«(e-r) 

for s<t, where a—16/T. Note that v is a solution of the equation 
v9+(aijvVi)y. = 0 adjoint to (2) for (y, s ) £ £ n X [O, /) with initial values 

v(y,t) = 1 if \y~$\2 <a(t-r), 

= 0 if | y - J |2 > <*(* - r). 

Set 

fltfÖS *) = au(y* s) iî s S t, , «(y, s) = t>(y, $) if s g /, 
and 

= ôij iî s > t, = 1 if J > /. 

Then $ is a nonnegative weak solution (in the sense of [2]) of the 
equation 

(9) 1.+ {*n(y,s)9,iU = 0 

in the cylinder {\y —£| 2 <<*(/ —r)} X [0, <x>). We now apply the 
Harnack inequality for weak solutions of (9). By Theorem 5 of [2] 
with 52 = i ? = a ( * - r ) / 1 6 g a Z y i 6 = l we have 

/ | * -€ | 2 <a(*-r ) 

where, for equations of the form (9), C depends only upon n and z>. 
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3. An auxiliary estimate. To obtain the upper bound for g we shall 
use the following estimate for a solution of the Cauchy problem for 
(2) with data whose support lies outside a sphere in En. The theorem 
which we give here is a special case of a more general result which is 
valid for solutions of quasilinear equations of the type considered 
in [2]. 

THEOREM 2. Let u0(x) be an L2(En) function such that UQ~0 for 
| x—y\ <<r, where yÇzEn and a >0 are fixed. Suppose that u is a solution 
of (2) in EnX(rj, T) with initial values u(x, rj)=u0(x). Then if 
uE:L0O(EnX(rf) s)) for any s which satisfies (Xs — rj^a2, we have 

| u(y, s) | ^ k(s - rj)-»i*exv[-<r2/32v(s - *?)]NU2<i5n) 

where k > 0 is a constant which depends only upon n and v. 

PROOF. For Rèz2, let yii(x) be a C°°(En) function such that yn^l 
for | * - - y | g i ? — l , Yi2 = 0 for \x—y\ ï£R, O g Y ^ g l and |grad yp\ 
is bounded by a constant independent of R. Multiply both sides of (2) 
by y%e2hu, where 

*(*, I) - - | * - y \2/&v{2(s - * ) - ( * - „)}, 

and integrate over EnX(r], r ) . After integration by parts and some 
elementary estimates, we obtain 

(10) 

1 C 2 2A 2 I , C Ç 2 2h 2, _ _ , , _ x y _ 
— I y Re u dx —• I I y Re u (2aijhXihXj + htjdxdt 

1 /" 2 2A 2 C C 2/i 2 i i2 
S — I yRe u dx + 2v I I e u \ gradyBJ dxdt. 

E'X(V,*) 

In view of (4), 2aijhx.hXJ+ht^0. Moreover, since u^LC0(EnX(rjj s)), 
the second integral on the right in (10) tends to zero as R—*oo. 
Therefore we derive from (10) the estimate 

max i exp[2h(x,t)]u2(x} t)dx 
(,.•) *M*-i/i2s(«-n)/4 

^ J exp[2h(x9rj)]u(i(x)dx = I exp[2A(#,rç)]wo(ff)d#. 

For \x—y\2^(s — rj)/4: and r / ^ J ^ s it is easily seen that 2h(xf t) 
è — l / l ó p , while for \x—y\2^a2^s—ri we have 2h(x, 7i)^—l/16v 
-<r2/16p(s-ri). Thus 
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(11) max I u (x, t)dx ^ exp[—Œ2/16P(S — *?)]||w0|| z ^ V 

Let Q={\x-y\2<(s-r))/4:}x(v, *)]• According to Theorem 2 
of [2], 

I u(y, s) | £ C(* - i7)~(n+2)/4( f f u2dxdt\ 

where C depends only upon n and v. In view of (11) 

( f f u2dxdi\ S (s - v)U2 exp[-a2/32v(s - v)]\\uo\\L2(En) 

and the assertion of the theorem follows by combining the last two 
estimates. 

.It is clear that a result analogous to Theorem 2 also holds for the 
equation adjoint to (2). 

4. The upper bound. We first prove that if <r2 à s — v > 0 then 

(12) f g\y, s\ i, v)d{ £ k(s - rçr»>2exp[- <r2/16v(s - *?)], 
J \V-S\>v 

where k > 0 is a constant depending only upon w and J>. To this end set 

J \v-t\>9 

Then w is a nonnegative solution of (2) for t>rj with initial values 
u(x, rj)=0 if \x —y\ <<r, and u(x, Ti)=g(y, s; x, rj) if \x— y\ >o\ 
Moreover, in view of (5), (6), and (7), u(x, rj)E:L2(En) and 0^u(x, i) 
^k(s — 7))~nI2. Thus we may apply Theorem 2 to obtain 

0£u(y,s) = f gKy,s)Çyri)dÇ 
J ly~fl><r 

^ *(j - T;)-/4 exp[-<r2/32K* - *)] j f g2G>, ̂ ; f, if)*} 
wi»-ri>» / 

and (12) follows easily. Note that a similar estimate holds if we inte
grate with respect to y instead of f in (12). 

Let (x, t), (£, r) be fixed points of 5 with t>r. Set o-= | x—£| /2 and 
assume that t—r^cr2. By the Kolmogorov identity 

g(x, t\ €, r) = f g(*, *; f, (* + r)/2) g(f, (* + r ) /2 ; ç, r ) # . 
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Split the integral over En into an integral J\ over \x-~f | *£<r and an 
integral Ji over \x — f| <<r. By the Schwarz inequality 

Ji£ { f «1(*,<;f,0 + r)/2)#l 

\f g2(t,(t + T)/2;i;,T)dç\ . 

Now using (12) to estimate the first integral on the right and (6) to 
estimate the second, we obtain 

(13) Jx g k(l - r)-*/2 exp{ - | * - f | V 6 ^ 0 - *)}> 

where k depends only upon n and v. The estimate (13) also holds for 
/ 2 . To show this we note that \x — f| < c r = | x —f| /2 implies that 
| f—?| ècr. Thus J2 is dominated by the integral over |£—f| à c . 
The assertion now follows by the argument used above with the roles 
of (12) and (6) interchanged. Thus we have derived the required 
upper bound for g in case \x —£ 12^4(/ —r). If \x—£ 12<4(/ —r), then 
in view of (7), we have 

g(*, *; £, T)âJK*-T)^ /*â*^ 1 A 6 ' (* - r ) -» '* exp{ - | * - £ | 2 / 6 M / ~ r ) } , 

where ft depends only upon n and v. This completes the proof of 
Theorem 1 for the special case of equation (2). 

5. Remark. In the estimates derived above all of the constants 
are independent of T except for the lower bound for 

/ 
g(x,t;Ç,r)dx 

l*-*f<a(*-T) 

in §2. I t is, however, possible to choose a>0 depending only upon n 
and v so that the lower bound for this integral also depends only upon 
n and v. Thus all of the estimates can be made independent of T. 

Consider the equation 

ut - {aij(x)uXi}Xj = 0 

in E n X ( 0 , oo ), where the a a satisfy (4) for all # £ £ » and n^3. Then 

ƒ' 
«/ o 

«(*,*; É,0)<» = G(*,Ö, 

where G(x, f) is the fundamental solution of the elliptic equation 

{ai3{x)uXi}Xi = 0. 
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Since the constants in the estimates for g are independent of T we 
can integrate these estimates to obtain 

K-1] x - £|2~» S G(x,Q S K\ x - £|2-». 

where K depends only on n and v. This result is known, having been 
derived directly from potential theoretic considerations by H. Royden 
and by Littman, Stampacchia and Weinberger. 
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